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CHAPTER 1

Overview

NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics,
and function of complex networks.

With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of
random and classic networks, analyze network structure, build network models, design new network algorithms, draw
networks, and much more.

1.1 Who uses NetworkX?

The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social
scientists. Good reviews of the state-of-the-art in the science of complex networks are presented in Albert and Barabási
[BA02], Newman [Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic texts [Bollobas01],
[Diestel97] and [West01] for graph theoretic results and terminology. For basic graph algorithms, we recommend the
texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BE05].

1.2 Goals

NetworkX is intended to provide

• tools for the study of the structure and dynamics of social, biological, and infrastructure networks,

• a standard programming interface and graph implementation that is suitable for many applications,

• a rapid development environment for collaborative, multidisciplinary projects,

• an interface to existing numerical algorithms and code written in C, C++, and FORTRAN,

• the ability to painlessly slurp in large nonstandard data sets.

1.3 The Python programming language

Python is a powerful programming language that allows simple and flexible representations of networks, and clear and
concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem
of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition
Python is also an excellent “glue” language for putting together pieces of software from other languages which allows
reuse of legacy code and engineering of high-performance algorithms [Langtangen04].

Equally important, Python is free, well-supported, and a joy to use.
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In order to make the most out of NetworkX you will want to know how to write basic programs in Python. Among
the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli
[Martelli03].

1.4 Free software

NetworkX is free software; you can redistribute it and/or modify it under the terms of the BSD License. We welcome
contributions from the community. Information on NetworkX development is found at the NetworkX Developer Zone
at Github https://github.com/networkx/networkx

1.5 History

NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and
Pieter Swart in 2002 and 2003. The first public release was in April 2005.

Many people have contributed to the success of NetworkX. Some of the contributors are listed in the credits.

1.5.1 What Next

• A Brief Tour

• Installing

• Reference

• Examples
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http://www.python.org
https://github.com/networkx/networkx


CHAPTER 2

Introduction

The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph
objects, generators to create standard graphs, IO routines for reading in existing datasets, algorithms to analyse the
resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph
object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also
makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be
easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have
put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please
contact us by joining the NetworkX Google group.

Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names
are lower_case_underscore (lowercase with an underscore representing a space between words).

2.1 NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

>>> import networkx as nx

To save repetition, in the documentation we assume that NetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your
PYTHONPATH.

The following basic graph types are provided as Python classes:

Graph This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow
self-loop edges between a node and itself.

DiGraph Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of
Graph).

MultiGraph A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional
flexibility leads to some degradation in performance, though usually not significant.

MultiDiGraph A directed version of a MultiGraph.

Empty graph-like objects are created with

>>> G=nx.Graph()
>>> G=nx.DiGraph()

3
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>>> G=nx.MultiGraph()
>>> G=nx.MultiDiGraph()

All graph classes allow any hashable object as a node. Hashable objects include strings, tuples, integers, and more.
Arbitrary edge attributes such as weights and labels can be associated with an edge.

The graph internal data structures are based on an adjacency list representation and implemented using Python dic-
tionary datastructures. The graph adjaceny structure is implemented as a Python dictionary of dictionaries; the outer
dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge at-
tributes associated with that edge. This “dict-of-dicts” structure allows fast addition, deletion, and lookup of nodes
and neighbors in large graphs. The underlying datastructure is accessed directly by methods (the programming in-
terface “API”) in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via
those API methods and not by acting directly on the datastructure. This design allows for possible replacement of the
‘dicts-of-dicts’-based datastructure with an alternative datastructure that implements the same methods.

2.1.1 Graphs

The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection
of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or
edges. NetworkX graph objects come in different flavors depending on two main properties of the network:

• Directed: Are the edges directed? Does the order of the edge pairs (u,v) matter? A directed graph is specified
by the “Di” prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph
properties are defined differently for directed graphs.

• Multi-edges: Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges
requires a different data structure, though tricky users could design edge data objects to support this function-
ality. We provide a standard data structure and interface for this type of graph using the prefix “Multi”, e.g.
MultiGraph().

The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph

2.2 Nodes and Edges

The next choice you have to make when specifying a graph is what kinds of nodes and edges to use.

If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you
need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use
that structure as your nodes provided it is hashable. If it is not hashable you can use a unique identifier to represent
the node and assign the data as a node attribute.

Edges often have data associated with them. Arbitrary data can associated with edges as an edge attribute. If the data
is numeric and the intent is to represent a weighted graph then use the ‘weight’ keyword for the attribute. Some of the
graph algorithms, such as Dijkstra’s shortest path algorithm, use this attribute name to get the weight for each edge.

Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword
except ‘weight’ to name your attribute and can then easily query the edge data by that attribute keyword.

Once you’ve decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or
without multiedges you are ready to build your network.

2.2.1 Graph Creation

NetworkX graph objects can be created in one of three ways:

4 Chapter 2. Introduction



NetworkX Reference, Release 1.11

• Graph generators – standard algorithms to create network topologies.

• Importing data from pre-existing (usually file) sources.

• Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manip-
ulate the graph. For example,

>>> import networkx as nx
>>> G=nx.Graph()
>>> G.add_edge(1,2) # default edge data=1
>>> G.add_edge(2,3,weight=0.9) # specify edge data

Edge attributes can be anything:

>>> import math
>>> G.add_edge('y','x',function=math.cos)
>>> G.add_node(math.cos) # any hashable can be a node

You can add many edges at one time:

>>> elist=[('a','b',5.0),('b','c',3.0),('a','c',1.0),('c','d',7.3)]
>>> G.add_weighted_edges_from(elist)

See the /tutorial/index for more examples.

Some basic graph operations such as union and intersection are described in the Operators module documentation.

Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage.

For importing network data from formats such as GML, GraphML, edge list text files see the Reading and writing
graphs subpackage.

2.2.2 Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed
only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges()
and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save
memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or
one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric
and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges
as a relationship between nodes. You can see this by our avoidance of notation like G[u,v] in favor of G[u][v]. Most
data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it
doesn’t really matter which way you examine the graph. G.edges() removes duplicate representations of each edge
while G.neighbors(n) or G[n] is slightly faster but doesn’t remove duplicates.

Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example
nx.triangles(G,n) gives the number of triangles which include node n as a vertex. These functions are grouped in the
code and documentation under the term algorithms.

2.2.3 Algorithms

A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see
traversal), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If
you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google
group or the Github Developer Zone.
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As an example here is code to use Dijkstra’s algorithm to find the shortest weighted path:

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

2.2.4 Drawing

While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some
simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested)
pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python
package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module
drawing.

The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed
with a layout function. The edges are then lines between those dots.

>>> G=nx.cubical_graph()
>>> nx.draw(G) # default spring_layout
>>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b')

See the examples for more ideas.

2.2.5 Data Structure

NetworkX uses a “dictionary of dictionaries of dictionaries” as the basic network data structure. This allows fast
lookup with reasonable storage for large sparse networks. The keys are nodes so G[u] returns an adjacency dictionary
keyed by neighbor to the edge attribute dictionary. The expression G[u][v] returns the edge attribute dictionary itself.
A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge
data.

Advantages of dict-of-dicts-of-dicts data structure:

• Find edges and remove edges with two dictionary look-ups.

• Prefer to “lists” because of fast lookup with sparse storage.

• Prefer to “sets” since data can be attached to edge.

• G[u][v] returns the edge attribute dictionary.

• n in G tests if node n is in graph G.

• for n in G: iterates through the graph.

• for nbr in G[n]: iterates through neighbors.

As an example, here is a representation of an undirected graph with the edges (‘A’,’B’), (‘B’,’C’)

>>> G=nx.Graph()
>>> G.add_edge('A','B')
>>> G.add_edge('B','C')
>>> print(G.adj)
{'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}, 'C': {}}}
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The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts-of-dicts structures
are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-
dicts-of-dicts 1 where the third dictionary is keyed by an edge key identifier to the fourth dictionary which contains
the edge attributes for that edge between the two nodes.

Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner
dictionary storing “name-value” relationships for that edge.

>>> G=nx.Graph()
>>> G.add_edge(1,2,color='red',weight=0.84,size=300)
>>> print(G[1][2]['size'])
300

1 “It’s dictionaries all the way down.”
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CHAPTER 3

Graph types

NetworkX provides data structures and methods for storing graphs.

All NetworkX graph classes allow (hashable) Python objects as nodes. and any Python object can be assigned as an
edge attribute.

The choice of graph class depends on the structure of the graph you want to represent.

3.1 Which graph class should I use?

Graph Type NetworkX Class
Undirected Simple Graph
Directed Simple DiGraph
With Self-loops Graph, DiGraph
With Parallel edges MultiGraph, MultiDiGraph

3.2 Basic graph types

3.2.1 Graph – Undirected graphs with self loops

Overview

Graph(data=None, **attr)
Base class for undirected graphs.

A Graph stores nodes and edges with optional data, or attributes.

Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters

• data (input graph) – Data to initialize graph. If data=None (default) an empty graph
is created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

9
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• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to graph as key=value pairs.

See also:

DiGraph(), MultiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.Graph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}
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Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed
by node. The next dict (adjlist) represents the adjacency list and holds edge data keyed by neighbor. The inner
dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined dict-like object. In general, the dict-like fea-
tures should be maintained but extra features can be added. To replace one of the dicts create a new graph
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class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are
node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the
data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like
object.

adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict
which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict
which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like
object.

Examples

Create a graph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
>>> G=OrderedNodeGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1), (1,1)) )
>>> G.edges()
[(2, 1), (2, 2), (1, 1)]

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are
added.

>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1), (1,1)) )
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all
edges. This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True
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3.2.2 Methods

Adding and removing nodes and edges

Graph.__init__([data]) Initialize a graph with edges, name, graph attributes.
Graph.add_node(n[, attr_dict]) Add a single node n and update node attributes.
Graph.add_nodes_from(nodes, **attr) Add multiple nodes.
Graph.remove_node(n) Remove node n.
Graph.remove_nodes_from(nodes) Remove multiple nodes.
Graph.add_edge(u, v[, attr_dict]) Add an edge between u and v.
Graph.add_edges_from(ebunch[, attr_dict]) Add all the edges in ebunch.
Graph.add_weighted_edges_from(ebunch[, weight]) Add all the edges in ebunch as weighted edges with specified weights.
Graph.remove_edge(u, v) Remove the edge between u and v.
Graph.remove_edges_from(ebunch) Remove all edges specified in ebunch.
Graph.add_star(nodes, **attr) Add a star.
Graph.add_path(nodes, **attr) Add a path.
Graph.add_cycle(nodes, **attr) Add a cycle.
Graph.clear() Remove all nodes and edges from the graph.

__init__

Graph.__init__(data=None, **attr)
Initialize a graph with edges, name, graph attributes.

Parameters

• data (input graph) – Data to initialize graph. If data=None (default) an empty graph
is created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

• name (string, optional (default=’’)) – An optional name for the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to graph as key=value pairs.

See also:

convert()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

3.2. Basic graph types 13



NetworkX Reference, Release 1.11

add_node

Graph.add_node(n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters

• n (node) – A node can be any hashable Python object except None.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of node attributes. Key/value pairs will update existing data associated with the
node.

• attr (keyword arguments, optional) – Set or change attributes using key=value.

See also:

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

add_nodes_from

Graph.add_nodes_from(nodes, **attr)
Add multiple nodes.

Parameters

• nodes (iterable container) – A container of nodes (list, dict, set, etc.). OR A
container of (node, attribute dict) tuples. Node attributes are updated using the attribute
dict.

• attr (keyword arguments, optional (default= no attributes)) –
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take
precedence over attributes specified generally.
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See also:

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

remove_node

Graph.remove_node(n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n (node) – A node in the graph

Raises NetworkXError – If n is not in the graph.

See also:

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
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remove_nodes_from

Graph.remove_nodes_from(nodes)
Remove multiple nodes.

Parameters nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a
node in the container is not in the graph it is silently ignored.

See also:

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

add_edge

Graph.add_edge(u, v, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with the
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to
a keyword which by default is ‘weight’.
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Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

add_edges_from

Graph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters

• ebunch (container of edges) – Each edge given in the container will be added to
the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a
dictionary containing edge data.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with each
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edge() add a single edge

add_weighted_edges_from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
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add_weighted_edges_from

Graph.add_weighted_edges_from(ebunch, weight=’weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

• ebunch (container of edges) – Each edge given in the list or container will be
added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

• weight (string, optional (default= ’weight’)) – The attribute name for
the edge weights to be added.

• attr (keyword arguments, optional (default= no attributes)) –
Edge attributes to add/update for all edges.

See also:

add_edge() add a single edge

add_edges_from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,
duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

remove_edge

Graph.remove_edge(u, v)
Remove the edge between u and v.

Parameters v (u,) – Remove the edge between nodes u and v.

Raises NetworkXError – If there is not an edge between u and v.

See also:

remove_edges_from() remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple

18 Chapter 3. Graph types



NetworkX Reference, Release 1.11

remove_edges_from

Graph.remove_edges_from(ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) – Each edge given in the
list or container will be removed from the graph. The edges can be:

• 2-tuples (u,v) edge between u and v.

• 3-tuples (u,v,k) where k is ignored.

See also:

remove_edge() remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

add_star

Graph.add_star(nodes, **attr)
Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters

• nodes (iterable container) – A container of nodes.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in star.

See also:

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
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add_path

Graph.add_path(nodes, **attr)
Add a path.

Parameters

• nodes (iterable container) – A container of nodes. A path will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in path.

See also:

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

add_cycle

Graph.add_cycle(nodes, **attr)
Add a cycle.

Parameters

• nodes (iterable container) – A container of nodes. A cycle will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in cycle.

See also:

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

clear

Graph.clear()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

Iterating over nodes and edges

Graph.nodes([data]) Return a list of the nodes in the graph.
Graph.nodes_iter([data]) Return an iterator over the nodes.
Graph.__iter__() Iterate over the nodes.
Graph.edges([nbunch, data, default]) Return a list of edges.
Graph.edges_iter([nbunch, data, default]) Return an iterator over the edges.
Graph.get_edge_data(u, v[, default]) Return the attribute dictionary associated with edge (u,v).
Graph.neighbors(n) Return a list of the nodes connected to the node n.
Graph.neighbors_iter(n) Return an iterator over all neighbors of node n.
Graph.__getitem__(n) Return a dict of neighbors of node n.
Graph.adjacency_list() Return an adjacency list representation of the graph.
Graph.adjacency_iter() Return an iterator of (node, adjacency dict) tuples for all nodes.
Graph.nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

Graph.nodes(data=False)
Return a list of the nodes in the graph.

Parameters data (boolean, optional (default=False)) – If False return a list of
nodes. If True return a two-tuple of node and node data dictionary

Returns nlist – A list of nodes. If data=True a list of two-tuples containing (node, node data dictio-
nary).

Return type list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
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nodes_iter

Graph.nodes_iter(data=False)
Return an iterator over the nodes.

Parameters data (boolean, optional (default=False)) – If False the iterator returns
nodes. If True return a two-tuple of node and node data dictionary

Returns niter – An iterator over nodes. If data=True the iterator gives two-tuples containing (node,
node data, dictionary)

Return type iterator

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

__iter__

Graph.__iter__()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter – An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

edges

Graph.edges(nbunch=None, data=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.
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• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edge_list – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is
not specified.

Return type list of edge tuples

See also:

edges_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

edges_iter

Graph.edges_iter(nbunch=None, data=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

3.2. Basic graph types 23



NetworkX Reference, Release 1.11

Return type iterator

See also:

edges() return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]

get_edge_data

Graph.get_edge_data(u, v, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters

• v (u,) –

• default (any Python object (default=None)) – Value to return if the edge
(u,v) is not found.

Returns edge_dict – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,
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>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

neighbors

Graph.neighbors(n)
Return a list of the nodes connected to the node n.

Parameters n (node) – A node in the graph

Returns nlist – A list of nodes that are adjacent to n.

Return type list

Raises NetworkXError – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]

neighbors_iter

Graph.neighbors_iter(n)
Return an iterator over all neighbors of node n.
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]

Notes

It is faster to use the idiom “in G[0]”, e.g.

>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]

__getitem__

Graph.__getitem__(n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n (node) – A node in the graph.

Returns adj_dict – The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

adjacency_list

Graph.adjacency_list()
Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list – The adjacency structure of the graph as a list of lists.

Return type lists of lists

See also:

adjacency_iter()
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

adjacency_iter

Graph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

See also:

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

Graph.nbunch_iter(nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) –
A container of nodes. The container will be iterated through once.

Returns niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None,
iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is
not hashable.

See also:

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.
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To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

Graph.has_node(n) Return True if the graph contains the node n.
Graph.__contains__(n) Return True if n is a node, False otherwise.
Graph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
Graph.order() Return the number of nodes in the graph.
Graph.number_of_nodes() Return the number of nodes in the graph.
Graph.__len__() Return the number of nodes.
Graph.degree([nbunch, weight]) Return the degree of a node or nodes.
Graph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
Graph.size([weight]) Return the number of edges.
Graph.number_of_edges([u, v]) Return the number of edges between two nodes.
Graph.nodes_with_selfloops() Return a list of nodes with self loops.
Graph.selfloop_edges([data, default]) Return a list of selfloop edges.
Graph.number_of_selfloops() Return the number of selfloop edges.

has_node

Graph.has_node(n)
Return True if the graph contains the node n.

Parameters n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

__contains__

Graph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
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has_edge

Graph.has_edge(u, v)
Return True if the edge (u,v) is in the graph.

Parameters v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and
not None) Python objects.

Returns edge_ind – True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

order

Graph.order()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

number_of_nodes(), __len__()

number_of_nodes

Graph.number_of_nodes()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

order(), __len__()
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

__len__

Graph.__len__()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

degree

Graph.degree(nbunch=None, weight=None)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and degree as values or a number if a single node is
specified.

Return type dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
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degree_iter

Graph.degree_iter(nbunch=None, weight=None)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:

degree()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

size

Graph.size(weight=None)
Return the number of edges.

Parameters weight (string or None, optional (default=None)) – The edge at-
tribute that holds the numerical value used as a weight. If None, then each edge has weight
1.

Returns nedges – The number of edges or sum of edge weights in the graph.

Return type int

See also:

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
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>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

number_of_edges

Graph.number_of_edges(u=None, v=None)
Return the number of edges between two nodes.

Parameters v (u,) – If u and v are specified, return the number of edges between u and v. Otherwise
return the total number of all edges.

Returns nedges – The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

Return type int

See also:

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

nodes_with_selfloops

Graph.nodes_with_selfloops()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist – A list of nodes with self loops.

Return type list

See also:

selfloop_edges(), number_of_selfloops()

32 Chapter 3. Graph types

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#list


NetworkX Reference, Release 1.11

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

selfloop_edges

Graph.selfloop_edges(data=False, default=None)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters

• data (string or bool, optional (default=False)) – Return selfloop
edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-
tuples (u,v,datavalue) (data=’attrname’)

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edgelist – A list of all selfloop edges.

Return type list of edge tuples

See also:

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]

number_of_selfloops

Graph.number_of_selfloops()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops – The number of selfloops.

Return type int

See also:

nodes_with_selfloops(), selfloop_edges()
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Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

Making copies and subgraphs

Graph.copy() Return a copy of the graph.
Graph.to_undirected() Return an undirected copy of the graph.
Graph.to_directed() Return a directed representation of the graph.
Graph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.

copy

Graph.copy()
Return a copy of the graph.

Returns G – A copy of the graph.

Return type Graph

See also:

to_directed() return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

to_undirected

Graph.to_undirected()
Return an undirected copy of the graph.

Returns G – A deepcopy of the graph.

Return type Graph/MultiGraph

See also:

copy(), add_edge(), add_edges_from()
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Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]

to_directed

Graph.to_directed()
Return a directed representation of the graph.

Returns G – A directed graph with the same name, same nodes, and with each edge (u,v,data)
replaced by two directed edges (u,v,data) and (v,u,data).

Return type DiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Warning: If you have subclassed Graph to use dict-like objects in the data structure, those changes do not
transfer to the DiGraph created by this method.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy
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>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

subgraph

Graph.subgraph(nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch (list, iterable) – A container of nodes which will be iterated through
once.

Returns G – A subgraph of the graph with the same edge attributes.

Return type Graph

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([ n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

3.2.3 DiGraph - Directed graphs with self loops

Overview

DiGraph(data=None, **attr)
Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters
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• data (input graph) – Data to initialize graph. If data=None (default) an empty graph
is created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to graph as key=value pairs.

See also:

Graph(), MultiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.DiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:
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Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.DiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):
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The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed
by node. The next dict (adjlist) represents the adjacency list and holds edge data keyed by neighbor. The inner
dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined dict-like object. In general, the dict-like fea-
tures should be maintained but extra features can be added. To replace one of the dicts create a new graph
class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are
node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

node_dict_factory [function, optional (default: dict)] Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a
dict-like object.

adjlist_dict_factory [function, optional (default: dict)] Factory function to be used to create the adjacency list
dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object

edge_attr_dict_factory [function, optional (default: dict)] Factory function to be used to create the edge at-
tribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return
a dict-like object.

Examples

Create a graph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
>>> G=OrderedNodeGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1), (1,1)) )
>>> G.edges()
[(2, 1), (2, 2), (1, 1)]

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are
added.

>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1), (1,1)) )
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all
edges. This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()

3.2. Basic graph types 39



NetworkX Reference, Release 1.11

>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True

3.2.4 Methods

Adding and removing nodes and edges

DiGraph.__init__([data]) Initialize a graph with edges, name, graph attributes.
DiGraph.add_node(n[, attr_dict]) Add a single node n and update node attributes.
DiGraph.add_nodes_from(nodes, **attr) Add multiple nodes.
DiGraph.remove_node(n) Remove node n.
DiGraph.remove_nodes_from(nbunch) Remove multiple nodes.
DiGraph.add_edge(u, v[, attr_dict]) Add an edge between u and v.
DiGraph.add_edges_from(ebunch[, attr_dict]) Add all the edges in ebunch.
DiGraph.add_weighted_edges_from(ebunch[, weight]) Add all the edges in ebunch as weighted edges with specified weights.
DiGraph.remove_edge(u, v) Remove the edge between u and v.
DiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch.
DiGraph.add_star(nodes, **attr) Add a star.
DiGraph.add_path(nodes, **attr) Add a path.
DiGraph.add_cycle(nodes, **attr) Add a cycle.
DiGraph.clear() Remove all nodes and edges from the graph.

__init__

DiGraph.__init__(data=None, **attr)
Initialize a graph with edges, name, graph attributes.

Parameters

• data (input graph) – Data to initialize graph. If data=None (default) an empty graph
is created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

• name (string, optional (default=’’)) – An optional name for the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to graph as key=value pairs.

See also:

convert()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)
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Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

add_node

DiGraph.add_node(n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters

• n (node) – A node can be any hashable Python object except None.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of node attributes. Key/value pairs will update existing data associated with the
node.

• attr (keyword arguments, optional) – Set or change attributes using key=value.

See also:

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

add_nodes_from

DiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.

Parameters
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• nodes (iterable container) – A container of nodes (list, dict, set, etc.). OR A
container of (node, attribute dict) tuples. Node attributes are updated using the attribute
dict.

• attr (keyword arguments, optional (default= no attributes)) –
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take
precedence over attributes specified generally.

See also:

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

remove_node

DiGraph.remove_node(n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n (node) – A node in the graph

Raises NetworkXError – If n is not in the graph.

See also:

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
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>>> G.remove_node(1)
>>> G.edges()
[]

remove_nodes_from

DiGraph.remove_nodes_from(nbunch)
Remove multiple nodes.

Parameters nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a
node in the container is not in the graph it is silently ignored.

See also:

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

add_edge

DiGraph.add_edge(u, v, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with the
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges
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Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to
a keyword which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

add_edges_from

DiGraph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters

• ebunch (container of edges) – Each edge given in the container will be added to
the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a
dictionary containing edge data.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with each
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edge() add a single edge

add_weighted_edges_from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence over attributes specified generally.

44 Chapter 3. Graph types



NetworkX Reference, Release 1.11

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

add_weighted_edges_from

DiGraph.add_weighted_edges_from(ebunch, weight=’weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

• ebunch (container of edges) – Each edge given in the list or container will be
added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

• weight (string, optional (default= ’weight’)) – The attribute name for
the edge weights to be added.

• attr (keyword arguments, optional (default= no attributes)) –
Edge attributes to add/update for all edges.

See also:

add_edge() add a single edge

add_edges_from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,
duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

remove_edge

DiGraph.remove_edge(u, v)
Remove the edge between u and v.

Parameters v (u,) – Remove the edge between nodes u and v.

Raises NetworkXError – If there is not an edge between u and v.

See also:
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remove_edges_from() remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple

remove_edges_from

DiGraph.remove_edges_from(ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) – Each edge given in the
list or container will be removed from the graph. The edges can be:

• 2-tuples (u,v) edge between u and v.

• 3-tuples (u,v,k) where k is ignored.

See also:

remove_edge() remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

add_star

DiGraph.add_star(nodes, **attr)
Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters

• nodes (iterable container) – A container of nodes.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in star.
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See also:

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

add_path

DiGraph.add_path(nodes, **attr)
Add a path.

Parameters

• nodes (iterable container) – A container of nodes. A path will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in path.

See also:

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

add_cycle

DiGraph.add_cycle(nodes, **attr)
Add a cycle.

Parameters

• nodes (iterable container) – A container of nodes. A cycle will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in cycle.

See also:

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)
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clear

DiGraph.clear()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

Iterating over nodes and edges

DiGraph.nodes([data]) Return a list of the nodes in the graph.
DiGraph.nodes_iter([data]) Return an iterator over the nodes.
DiGraph.__iter__() Iterate over the nodes.
DiGraph.edges([nbunch, data, default]) Return a list of edges.
DiGraph.edges_iter([nbunch, data, default]) Return an iterator over the edges.
DiGraph.out_edges([nbunch, data, default]) Return a list of edges.
DiGraph.out_edges_iter([nbunch, data, default]) Return an iterator over the edges.
DiGraph.in_edges([nbunch, data]) Return a list of the incoming edges.
DiGraph.in_edges_iter([nbunch, data]) Return an iterator over the incoming edges.
DiGraph.get_edge_data(u, v[, default]) Return the attribute dictionary associated with edge (u,v).
DiGraph.neighbors(n) Return a list of successor nodes of n.
DiGraph.neighbors_iter(n) Return an iterator over successor nodes of n.
DiGraph.__getitem__(n) Return a dict of neighbors of node n.
DiGraph.successors(n) Return a list of successor nodes of n.
DiGraph.successors_iter(n) Return an iterator over successor nodes of n.
DiGraph.predecessors(n) Return a list of predecessor nodes of n.
DiGraph.predecessors_iter(n) Return an iterator over predecessor nodes of n.
DiGraph.adjacency_list() Return an adjacency list representation of the graph.
DiGraph.adjacency_iter() Return an iterator of (node, adjacency dict) tuples for all nodes.
DiGraph.nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

DiGraph.nodes(data=False)
Return a list of the nodes in the graph.

Parameters data (boolean, optional (default=False)) – If False return a list of
nodes. If True return a two-tuple of node and node data dictionary

Returns nlist – A list of nodes. If data=True a list of two-tuples containing (node, node data dictio-
nary).

Return type list
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

nodes_iter

DiGraph.nodes_iter(data=False)
Return an iterator over the nodes.

Parameters data (boolean, optional (default=False)) – If False the iterator returns
nodes. If True return a two-tuple of node and node data dictionary

Returns niter – An iterator over nodes. If data=True the iterator gives two-tuples containing (node,
node data, dictionary)

Return type iterator

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

__iter__

DiGraph.__iter__()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter – An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

3.2. Basic graph types 49



NetworkX Reference, Release 1.11

edges

DiGraph.edges(nbunch=None, data=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edge_list – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is
not specified.

Return type list of edge tuples

See also:

edges_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

edges_iter

DiGraph.edges_iter(nbunch=None, data=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters
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• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

Return type iterator

See also:

edges() return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

out_edges

DiGraph.out_edges(nbunch=None, data=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.
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Returns edge_list – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is
not specified.

Return type list of edge tuples

See also:

edges_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

out_edges_iter

DiGraph.out_edges_iter(nbunch=None, data=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

Return type iterator

See also:

edges() return a list of edges
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Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

in_edges

DiGraph.in_edges(nbunch=None, data=False)
Return a list of the incoming edges.

See also:

edges() return a list of edges

in_edges_iter

DiGraph.in_edges_iter(nbunch=None, data=False)
Return an iterator over the incoming edges.

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (bool, optional (default=False)) – If True, return edge attribute dict in
3-tuple (u,v,data).

Returns in_edge_iter – An iterator of (u,v) or (u,v,d) tuples of incoming edges.

Return type iterator

See also:

edges_iter() return an iterator of edges

get_edge_data

DiGraph.get_edge_data(u, v, default=None)
Return the attribute dictionary associated with edge (u,v).
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Parameters

• v (u,) –

• default (any Python object (default=None)) – Value to return if the edge
(u,v) is not found.

Returns edge_dict – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

neighbors

DiGraph.neighbors(n)
Return a list of successor nodes of n.

neighbors() and successors() are the same function.

neighbors_iter

DiGraph.neighbors_iter(n)
Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.
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__getitem__

DiGraph.__getitem__(n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n (node) – A node in the graph.

Returns adj_dict – The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

successors

DiGraph.successors(n)
Return a list of successor nodes of n.

neighbors() and successors() are the same function.

successors_iter

DiGraph.successors_iter(n)
Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

predecessors

DiGraph.predecessors(n)
Return a list of predecessor nodes of n.

predecessors_iter

DiGraph.predecessors_iter(n)
Return an iterator over predecessor nodes of n.
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adjacency_list

DiGraph.adjacency_list()
Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list – The adjacency structure of the graph as a list of lists.

Return type lists of lists

See also:

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

adjacency_iter

DiGraph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

See also:

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

DiGraph.nbunch_iter(nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) –
A container of nodes. The container will be iterated through once.
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Returns niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None,
iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is
not hashable.

See also:

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

DiGraph.has_node(n) Return True if the graph contains the node n.
DiGraph.__contains__(n) Return True if n is a node, False otherwise.
DiGraph.has_edge(u, v) Return True if the edge (u,v) is in the graph.
DiGraph.order() Return the number of nodes in the graph.
DiGraph.number_of_nodes() Return the number of nodes in the graph.
DiGraph.__len__() Return the number of nodes.
DiGraph.degree([nbunch, weight]) Return the degree of a node or nodes.
DiGraph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
DiGraph.in_degree([nbunch, weight]) Return the in-degree of a node or nodes.
DiGraph.in_degree_iter([nbunch, weight]) Return an iterator for (node, in-degree).
DiGraph.out_degree([nbunch, weight]) Return the out-degree of a node or nodes.
DiGraph.out_degree_iter([nbunch, weight]) Return an iterator for (node, out-degree).
DiGraph.size([weight]) Return the number of edges.
DiGraph.number_of_edges([u, v]) Return the number of edges between two nodes.
DiGraph.nodes_with_selfloops() Return a list of nodes with self loops.
DiGraph.selfloop_edges([data, default]) Return a list of selfloop edges.
DiGraph.number_of_selfloops() Return the number of selfloop edges.

has_node

DiGraph.has_node(n)
Return True if the graph contains the node n.

Parameters n (node) –

Examples
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>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

__contains__

DiGraph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

has_edge

DiGraph.has_edge(u, v)
Return True if the edge (u,v) is in the graph.

Parameters v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and
not None) Python objects.

Returns edge_ind – True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge(0,1)
True
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>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

order

DiGraph.order()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

number_of_nodes(), __len__()

number_of_nodes

DiGraph.number_of_nodes()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

__len__

DiGraph.__len__()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

3.2. Basic graph types 59

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int


NetworkX Reference, Release 1.11

degree

DiGraph.degree(nbunch=None, weight=None)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and degree as values or a number if a single node is
specified.

Return type dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

degree_iter

DiGraph.degree_iter(nbunch=None, weight=None)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:

degree(), in_degree(), out_degree(), in_degree_iter(), out_degree_iter()
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Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

in_degree

DiGraph.in_degree(nbunch=None, weight=None)
Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and in-degree as values or a number if a single node
is specified.

Return type dictionary, or number

See also:

degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]

in_degree_iter

DiGraph.in_degree_iter(nbunch=None, weight=None)
Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.
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• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, in-degree).

Return type an iterator

See also:

degree(), in_degree(), out_degree(), out_degree_iter()

Examples

>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]

out_degree

DiGraph.out_degree(nbunch=None, weight=None)
Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and out-degree as values or a number if a single node
is specified.

Return type dictionary, or number

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]
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out_degree_iter

DiGraph.out_degree_iter(nbunch=None, weight=None)
Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, out-degree).

Return type an iterator

See also:

degree(), in_degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]

size

DiGraph.size(weight=None)
Return the number of edges.

Parameters weight (string or None, optional (default=None)) – The edge at-
tribute that holds the numerical value used as a weight. If None, then each edge has weight
1.

Returns nedges – The number of edges or sum of edge weights in the graph.

Return type int

See also:

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
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>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

number_of_edges

DiGraph.number_of_edges(u=None, v=None)
Return the number of edges between two nodes.

Parameters v (u,) – If u and v are specified, return the number of edges between u and v. Otherwise
return the total number of all edges.

Returns nedges – The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

Return type int

See also:

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

nodes_with_selfloops

DiGraph.nodes_with_selfloops()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist – A list of nodes with self loops.

Return type list

See also:

selfloop_edges(), number_of_selfloops()
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

selfloop_edges

DiGraph.selfloop_edges(data=False, default=None)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters

• data (string or bool, optional (default=False)) – Return selfloop
edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-
tuples (u,v,datavalue) (data=’attrname’)

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edgelist – A list of all selfloop edges.

Return type list of edge tuples

See also:

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]

number_of_selfloops

DiGraph.number_of_selfloops()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops – The number of selfloops.

Return type int

See also:

nodes_with_selfloops(), selfloop_edges()
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Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

Making copies and subgraphs

DiGraph.copy() Return a copy of the graph.
DiGraph.to_undirected([reciprocal]) Return an undirected representation of the digraph.
DiGraph.to_directed() Return a directed copy of the graph.
DiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
DiGraph.reverse([copy]) Return the reverse of the graph.

copy

DiGraph.copy()
Return a copy of the graph.

Returns G – A copy of the graph.

Return type Graph

See also:

to_directed() return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

to_undirected

DiGraph.to_undirected(reciprocal=False)
Return an undirected representation of the digraph.

Parameters reciprocal (bool (optional)) – If True only keep edges that appear in both
directions in the original digraph.

Returns G – An undirected graph with the same name and nodes and with edge (u,v,data) if either
(u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is
different, only one edge is created with an arbitrary choice of which edge data to use. You must
check and correct for this manually if desired.
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Return type Graph

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a
combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the
edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not
transfer to the Graph created by this method.

to_directed

DiGraph.to_directed()
Return a directed copy of the graph.

Returns G – A deepcopy of the graph.

Return type DiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
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subgraph

DiGraph.subgraph(nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch (list, iterable) – A container of nodes which will be iterated through
once.

Returns G – A subgraph of the graph with the same edge attributes.

Return type Graph

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([ n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

reverse

DiGraph.reverse(copy=True)
Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters copy (bool optional (default=True)) – If True, return a new DiGraph
holding the reversed edges. If False, reverse the reverse graph is created using the original
graph (this changes the original graph).

3.2.5 MultiGraph - Undirected graphs with self loops and parallel edges

Overview

MultiGraph(data=None, **attr)
An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiGraph holds undirected edges. Self loops are allowed.
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Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters

• data (input graph) – Data to initialize graph. If data=None (default) an empty graph
is created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to graph as key=value pairs.

See also:

Graph(), DiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.MultiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())
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If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists,
an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused
integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,key,eattr['weight'])
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(1, 2, 0, 4)
(2, 1, 0, 4)
(2, 3, 0, 8)
(3, 2, 0, 8)
>>> G.edges(data='weight', keys=True)
[(1, 2, 0, 4), (1, 2, 1, None), (2, 3, 0, 8), (3, 4, 0, None), (4, 5, 0, None)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adja-
cency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge_key dicts keyed by
neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict structure can be replaced by a user defined dict-
like object. In general, the dict-like features should be maintained but extra features can be added. To re-
place one of the dicts create a new graph class by changing the class(!) variable holding the factory for that
dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory and
edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the
data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like
object.

adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict
which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like
object.

edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which
holds edge data keyed by edge key. It should require no arguments and return a dict-like object.

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict
which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like
object.

Examples

Create a multigraph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiGraph):
... node_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1), (2,1), (1,1)) )
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]
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Create a multgraph object that tracks the order nodes are added and for each node track the order that neighbors
are added and for each neighbor tracks the order that multiedges are added.

>>> class OrderedGraph(nx.MultiGraph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
... edge_key_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)) )
>>> G.edges(keys=True)
[(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

3.2.6 Methods

Adding and removing nodes and edges

MultiGraph.__init__([data])
MultiGraph.add_node(n[, attr_dict]) Add a single node n and update node attributes.
MultiGraph.add_nodes_from(nodes, **attr) Add multiple nodes.
MultiGraph.remove_node(n) Remove node n.
MultiGraph.remove_nodes_from(nodes) Remove multiple nodes.
MultiGraph.add_edge(u, v[, key, attr_dict]) Add an edge between u and v.
MultiGraph.add_edges_from(ebunch[, attr_dict]) Add all the edges in ebunch.
MultiGraph.add_weighted_edges_from(ebunch[, ...]) Add all the edges in ebunch as weighted edges with specified weights.
MultiGraph.remove_edge(u, v[, key]) Remove an edge between u and v.
MultiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch.
MultiGraph.add_star(nodes, **attr) Add a star.
MultiGraph.add_path(nodes, **attr) Add a path.
MultiGraph.add_cycle(nodes, **attr) Add a cycle.
MultiGraph.clear() Remove all nodes and edges from the graph.

__init__

MultiGraph.__init__(data=None, **attr)

add_node

MultiGraph.add_node(n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters

• n (node) – A node can be any hashable Python object except None.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of node attributes. Key/value pairs will update existing data associated with the
node.

• attr (keyword arguments, optional) – Set or change attributes using key=value.
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See also:

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

add_nodes_from

MultiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.

Parameters

• nodes (iterable container) – A container of nodes (list, dict, set, etc.). OR A
container of (node, attribute dict) tuples. Node attributes are updated using the attribute
dict.

• attr (keyword arguments, optional (default= no attributes)) –
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take
precedence over attributes specified generally.

See also:

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
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Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

remove_node

MultiGraph.remove_node(n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n (node) – A node in the graph

Raises NetworkXError – If n is not in the graph.

See also:

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

remove_nodes_from

MultiGraph.remove_nodes_from(nodes)
Remove multiple nodes.

Parameters nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a
node in the container is not in the graph it is silently ignored.

See also:

remove_node()

Examples
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>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

add_edge

MultiGraph.add_edge(u, v, key=None, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• key (hashable identifier, optional (default=lowest unused
integer)) – Used to distinguish multiedges between a pair of nodes.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with the
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge
will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear
how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph
algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container
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Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

add_edges_from

MultiGraph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters

• ebunch (container of edges) – Each edge given in the container will be added to
the graph. The edges can be:

– 2-tuples (u,v) or

– 3-tuples (u,v,d) for an edge attribute dict d, or

– 4-tuples (u,v,k,d) for an edge identified by key k

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with each
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edge() add a single edge

add_weighted_edges_from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
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add_weighted_edges_from

MultiGraph.add_weighted_edges_from(ebunch, weight=’weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

• ebunch (container of edges) – Each edge given in the list or container will be
added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

• weight (string, optional (default= ’weight’)) – The attribute name for
the edge weights to be added.

• attr (keyword arguments, optional (default= no attributes)) –
Edge attributes to add/update for all edges.

See also:

add_edge() add a single edge

add_edges_from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,
duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

remove_edge

MultiGraph.remove_edge(u, v, key=None)
Remove an edge between u and v.

Parameters

• v (u,) – Remove an edge between nodes u and v.

• key (hashable identifier, optional (default=None)) – Used to distin-
guish multiple edges between a pair of nodes. If None remove a single (abritrary) edge
between u and v.

Raises NetworkXError – If there is not an edge between u and v, or if there is no edge with the
specified key.

See also:

remove_edges_from() remove a collection of edges
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Examples

>>> G = nx.MultiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')

remove_edges_from

MultiGraph.remove_edges_from(ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) – Each edge given in the
list or container will be removed from the graph. The edges can be:

• 2-tuples (u,v) All edges between u and v are removed.

• 3-tuples (u,v,key) The edge identified by key is removed.

• 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge() remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
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[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]

add_star

MultiGraph.add_star(nodes, **attr)
Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters

• nodes (iterable container) – A container of nodes.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in star.

See also:

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

add_path

MultiGraph.add_path(nodes, **attr)
Add a path.

Parameters

• nodes (iterable container) – A container of nodes. A path will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in path.

See also:

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
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add_cycle

MultiGraph.add_cycle(nodes, **attr)
Add a cycle.

Parameters

• nodes (iterable container) – A container of nodes. A cycle will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in cycle.

See also:

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

clear

MultiGraph.clear()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

Iterating over nodes and edges

MultiGraph.nodes([data]) Return a list of the nodes in the graph.
MultiGraph.nodes_iter([data]) Return an iterator over the nodes.
MultiGraph.__iter__() Iterate over the nodes.
MultiGraph.edges([nbunch, data, keys, default]) Return a list of edges.
MultiGraph.edges_iter([nbunch, data, keys, ...]) Return an iterator over the edges.
MultiGraph.get_edge_data(u, v[, key, default]) Return the attribute dictionary associated with edge (u,v).
MultiGraph.neighbors(n) Return a list of the nodes connected to the node n.
MultiGraph.neighbors_iter(n) Return an iterator over all neighbors of node n.
MultiGraph.__getitem__(n) Return a dict of neighbors of node n.

Continued on next page
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Table 3.10 – continued from previous page
MultiGraph.adjacency_list() Return an adjacency list representation of the graph.
MultiGraph.adjacency_iter() Return an iterator of (node, adjacency dict) tuples for all nodes.
MultiGraph.nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

MultiGraph.nodes(data=False)
Return a list of the nodes in the graph.

Parameters data (boolean, optional (default=False)) – If False return a list of
nodes. If True return a two-tuple of node and node data dictionary

Returns nlist – A list of nodes. If data=True a list of two-tuples containing (node, node data dictio-
nary).

Return type list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

nodes_iter

MultiGraph.nodes_iter(data=False)
Return an iterator over the nodes.

Parameters data (boolean, optional (default=False)) – If False the iterator returns
nodes. If True return a two-tuple of node and node data dictionary

Returns niter – An iterator over nodes. If data=True the iterator gives two-tuples containing (node,
node data, dictionary)

Return type iterator

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
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>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

__iter__

MultiGraph.__iter__()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter – An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

edges

MultiGraph.edges(nbunch=None, data=False, keys=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (bool, optional (default=False)) – Return two tuples (u,v) (False) or
three-tuples (u,v,data) (True).

• keys (bool, optional (default=False)) – Return two tuples (u,v) (False) or
three-tuples (u,v,key) (True).

Returns edge_list – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is
not specified.

Return type list of edge tuples

See also:

edges_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples
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>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True,keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

edges_iter

MultiGraph.edges_iter(nbunch=None, data=False, keys=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

Returns edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

See also:

edges() return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.
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Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]

get_edge_data

MultiGraph.get_edge_data(u, v, key=None, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters

• v (u,) –

• default (any Python object (default=None)) – Value to return if the edge
(u,v) is not found.

• key (hashable identifier, optional (default=None)) – Return data only
for the edge with specified key.

Returns edge_dict – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that
dictionary,

>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10
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Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

neighbors

MultiGraph.neighbors(n)
Return a list of the nodes connected to the node n.

Parameters n (node) – A node in the graph

Returns nlist – A list of nodes that are adjacent to n.

Return type list

Raises NetworkXError – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]

neighbors_iter

MultiGraph.neighbors_iter(n)
Return an iterator over all neighbors of node n.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]

3.2. Basic graph types 85

http://docs.python.org/library/functions.html#list


NetworkX Reference, Release 1.11

Notes

It is faster to use the idiom “in G[0]”, e.g.

>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]

__getitem__

MultiGraph.__getitem__(n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n (node) – A node in the graph.

Returns adj_dict – The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

adjacency_list

MultiGraph.adjacency_list()
Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list – The adjacency structure of the graph as a list of lists.

Return type lists of lists

See also:

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

86 Chapter 3. Graph types



NetworkX Reference, Release 1.11

adjacency_iter

MultiGraph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

See also:

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

MultiGraph.nbunch_iter(nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) –
A container of nodes. The container will be iterated through once.

Returns niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None,
iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is
not hashable.

See also:

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure
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MultiGraph.has_node(n) Return True if the graph contains the node n.
MultiGraph.__contains__(n) Return True if n is a node, False otherwise.
MultiGraph.has_edge(u, v[, key]) Return True if the graph has an edge between nodes u and v.
MultiGraph.order() Return the number of nodes in the graph.
MultiGraph.number_of_nodes() Return the number of nodes in the graph.
MultiGraph.__len__() Return the number of nodes.
MultiGraph.degree([nbunch, weight]) Return the degree of a node or nodes.
MultiGraph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
MultiGraph.size([weight]) Return the number of edges.
MultiGraph.number_of_edges([u, v]) Return the number of edges between two nodes.
MultiGraph.nodes_with_selfloops() Return a list of nodes with self loops.
MultiGraph.selfloop_edges([data, keys, default]) Return a list of selfloop edges.
MultiGraph.number_of_selfloops() Return the number of selfloop edges.

has_node

MultiGraph.has_node(n)
Return True if the graph contains the node n.

Parameters n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

__contains__

MultiGraph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

has_edge

MultiGraph.has_edge(u, v, key=None)
Return True if the graph has an edge between nodes u and v.
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Parameters

• v (u,) – Nodes can be, for example, strings or numbers.

• key (hashable identifier, optional (default=None)) – If specified re-
turn True only if the edge with key is found.

Returns edge_ind – True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True

The following syntax are equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

order

MultiGraph.order()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

number_of_nodes(), __len__()

number_of_nodes

MultiGraph.number_of_nodes()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int
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See also:

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

__len__

MultiGraph.__len__()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

degree

MultiGraph.degree(nbunch=None, weight=None)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and degree as values or a number if a single node is
specified.

Return type dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
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>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

degree_iter

MultiGraph.degree_iter(nbunch=None, weight=None)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:

degree()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

size

MultiGraph.size(weight=None)
Return the number of edges.

Parameters weight (string or None, optional (default=None)) – The edge at-
tribute that holds the numerical value used as a weight. If None, then each edge has weight
1.

Returns nedges – The number of edges or sum of edge weights in the graph.

Return type int

See also:

number_of_edges()
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

number_of_edges

MultiGraph.number_of_edges(u=None, v=None)
Return the number of edges between two nodes.

Parameters v (u,) – If u and v are specified, return the number of edges between u and v. Otherwise
return the total number of all edges.

Returns nedges – The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

Return type int

See also:

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

nodes_with_selfloops

MultiGraph.nodes_with_selfloops()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist – A list of nodes with self loops.

Return type list
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See also:

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

selfloop_edges

MultiGraph.selfloop_edges(data=False, keys=False, default=None)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters

• data (bool, optional (default=False)) – Return selfloop edges as two tuples
(u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue)
(data=’attrname’)

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

Returns edgelist – A list of all selfloop edges.

Return type list of edge tuples

See also:

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]
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number_of_selfloops

MultiGraph.number_of_selfloops()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops – The number of selfloops.

Return type int

See also:

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

Making copies and subgraphs

MultiGraph.copy() Return a copy of the graph.
MultiGraph.to_undirected() Return an undirected copy of the graph.
MultiGraph.to_directed() Return a directed representation of the graph.
MultiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.

copy

MultiGraph.copy()
Return a copy of the graph.

Returns G – A copy of the graph.

Return type Graph

See also:

to_directed() return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

94 Chapter 3. Graph types

http://docs.python.org/library/functions.html#int


NetworkX Reference, Release 1.11

to_undirected

MultiGraph.to_undirected()
Return an undirected copy of the graph.

Returns G – A deepcopy of the graph.

Return type Graph/MultiGraph

See also:

copy(), add_edge(), add_edges_from()

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]

to_directed

MultiGraph.to_directed()
Return a directed representation of the graph.

Returns G – A directed graph with the same name, same nodes, and with each edge (u,v,data)
replaced by two directed edges (u,v,data) and (v,u,data).

Return type MultiDiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not
transfer to the MultiDiGraph created by this method.
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Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

subgraph

MultiGraph.subgraph(nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch (list, iterable) – A container of nodes which will be iterated through
once.

Returns G – A subgraph of the graph with the same edge attributes.

Return type Graph

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([ n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
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3.2.7 MultiDiGraph - Directed graphs with self loops and parallel edges

Overview

MultiDiGraph(data=None, **attr)
A directed graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiDiGraph holds directed edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters

• data (input graph) – Data to initialize graph. If data=None (default) an empty graph
is created. The data can be an edge list, or any NetworkX graph object. If the corresponding
optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray,
a SciPy sparse matrix, or a PyGraphviz graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to graph as key=value pairs.

See also:

Graph(), DiGraph(), MultiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.MultiDiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,
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>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists,
an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused
integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
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... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (1, 2, None), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure. The outer dict (node_dict) holds adjacency
lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge_key dicts keyed by
neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict structure can be replaced by a user defined dict-
like object. In general, the dict-like features should be maintained but extra features can be added. To re-
place one of the dicts create a new graph class by changing the class(!) variable holding the factory for that
dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory and
edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the
data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like
object.

adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict
which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like
object.

edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which
holds edge data keyed by edge key. It should require no arguments and return a dict-like object.

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict
which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like
object.

Examples

Create a multigraph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiDiGraph):
... node_dict_factory = OrderedDict
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>>> G = OrderedGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1), (2,1), (1,1)) )
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]

Create a multdigraph object that tracks the order nodes are added and for each node track the order that neighbors
are added and for each neighbor tracks the order that multiedges are added.

>>> class OrderedGraph(nx.MultiDiGraph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
... edge_key_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from( (2,1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)) )
>>> G.edges(keys=True)
[(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

3.2.8 Methods

Adding and Removing Nodes and Edges

MultiDiGraph.__init__([data])
MultiDiGraph.add_node(n[, attr_dict]) Add a single node n and update node attributes.
MultiDiGraph.add_nodes_from(nodes, **attr) Add multiple nodes.
MultiDiGraph.remove_node(n) Remove node n.
MultiDiGraph.remove_nodes_from(nbunch) Remove multiple nodes.
MultiDiGraph.add_edge(u, v[, key, attr_dict]) Add an edge between u and v.
MultiDiGraph.add_edges_from(ebunch[, attr_dict]) Add all the edges in ebunch.
MultiDiGraph.add_weighted_edges_from(ebunch) Add all the edges in ebunch as weighted edges with specified weights.
MultiDiGraph.remove_edge(u, v[, key]) Remove an edge between u and v.
MultiDiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch.
MultiDiGraph.add_star(nodes, **attr) Add a star.
MultiDiGraph.add_path(nodes, **attr) Add a path.
MultiDiGraph.add_cycle(nodes, **attr) Add a cycle.
MultiDiGraph.clear() Remove all nodes and edges from the graph.

__init__

MultiDiGraph.__init__(data=None, **attr)

add_node

MultiDiGraph.add_node(n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters
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• n (node) – A node can be any hashable Python object except None.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of node attributes. Key/value pairs will update existing data associated with the
node.

• attr (keyword arguments, optional) – Set or change attributes using key=value.

See also:

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

add_nodes_from

MultiDiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.

Parameters

• nodes (iterable container) – A container of nodes (list, dict, set, etc.). OR A
container of (node, attribute dict) tuples. Node attributes are updated using the attribute
dict.

• attr (keyword arguments, optional (default= no attributes)) –
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take
precedence over attributes specified generally.

See also:

add_node()

3.2. Basic graph types 101



NetworkX Reference, Release 1.11

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

remove_node

MultiDiGraph.remove_node(n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n (node) – A node in the graph

Raises NetworkXError – If n is not in the graph.

See also:

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

remove_nodes_from

MultiDiGraph.remove_nodes_from(nbunch)
Remove multiple nodes.

Parameters nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a
node in the container is not in the graph it is silently ignored.
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See also:

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

add_edge

MultiDiGraph.add_edge(u, v, key=None, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• key (hashable identifier, optional (default=lowest unused
integer)) – Used to distinguish multiedges between a pair of nodes.

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with the
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge
will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear
how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph
algorithms.
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Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.MultiDiGraph()
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

add_edges_from

MultiDiGraph.add_edges_from(ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters

• ebunch (container of edges) – Each edge given in the container will be added to
the graph. The edges can be:

– 2-tuples (u,v) or

– 3-tuples (u,v,d) for an edge attribute dict d, or

– 4-tuples (u,v,k,d) for an edge identified by key k

• attr_dict (dictionary, optional (default= no attributes)) – Dic-
tionary of edge attributes. Key/value pairs will update existing data associated with each
edge.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edge() add a single edge

add_weighted_edges_from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
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Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

add_weighted_edges_from

MultiDiGraph.add_weighted_edges_from(ebunch, weight=’weight’, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

• ebunch (container of edges) – Each edge given in the list or container will be
added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

• weight (string, optional (default= ’weight’)) – The attribute name for
the edge weights to be added.

• attr (keyword arguments, optional (default= no attributes)) –
Edge attributes to add/update for all edges.

See also:

add_edge() add a single edge

add_edges_from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph,
duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

remove_edge

MultiDiGraph.remove_edge(u, v, key=None)
Remove an edge between u and v.

Parameters

• v (u,) – Remove an edge between nodes u and v.

• key (hashable identifier, optional (default=None)) – Used to distin-
guish multiple edges between a pair of nodes. If None remove a single (abritrary) edge
between u and v.

Raises NetworkXError – If there is not an edge between u and v, or if there is no edge with the
specified key.

See also:

remove_edges_from() remove a collection of edges
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Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiDiGraph()
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')

remove_edges_from

MultiDiGraph.remove_edges_from(ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) – Each edge given in the
list or container will be removed from the graph. The edges can be:

• 2-tuples (u,v) All edges between u and v are removed.

• 3-tuples (u,v,key) The edge identified by key is removed.

• 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge() remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
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[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]

add_star

MultiDiGraph.add_star(nodes, **attr)
Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters

• nodes (iterable container) – A container of nodes.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in star.

See also:

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

add_path

MultiDiGraph.add_path(nodes, **attr)
Add a path.

Parameters

• nodes (iterable container) – A container of nodes. A path will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in path.

See also:

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
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add_cycle

MultiDiGraph.add_cycle(nodes, **attr)
Add a cycle.

Parameters

• nodes (iterable container) – A container of nodes. A cycle will be constructed
from the nodes (in order) and added to the graph.

• attr (keyword arguments, optional (default= no attributes)) –
Attributes to add to every edge in cycle.

See also:

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

clear

MultiDiGraph.clear()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

Iterating over nodes and edges

MultiDiGraph.nodes([data]) Return a list of the nodes in the graph.
MultiDiGraph.nodes_iter([data]) Return an iterator over the nodes.
MultiDiGraph.__iter__() Iterate over the nodes.
MultiDiGraph.edges([nbunch, data, keys, default]) Return a list of edges.
MultiDiGraph.edges_iter([nbunch, data, ...]) Return an iterator over the edges.
MultiDiGraph.out_edges([nbunch, keys, data]) Return a list of the outgoing edges.
MultiDiGraph.out_edges_iter([nbunch, data, ...]) Return an iterator over the edges.
MultiDiGraph.in_edges([nbunch, keys, data]) Return a list of the incoming edges.
MultiDiGraph.in_edges_iter([nbunch, data, keys]) Return an iterator over the incoming edges.

Continued on next page
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Table 3.14 – continued from previous page
MultiDiGraph.get_edge_data(u, v[, key, default]) Return the attribute dictionary associated with edge (u,v).
MultiDiGraph.neighbors(n) Return a list of successor nodes of n.
MultiDiGraph.neighbors_iter(n) Return an iterator over successor nodes of n.
MultiDiGraph.__getitem__(n) Return a dict of neighbors of node n.
MultiDiGraph.successors(n) Return a list of successor nodes of n.
MultiDiGraph.successors_iter(n) Return an iterator over successor nodes of n.
MultiDiGraph.predecessors(n) Return a list of predecessor nodes of n.
MultiDiGraph.predecessors_iter(n) Return an iterator over predecessor nodes of n.
MultiDiGraph.adjacency_list() Return an adjacency list representation of the graph.
MultiDiGraph.adjacency_iter() Return an iterator of (node, adjacency dict) tuples for all nodes.
MultiDiGraph.nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

MultiDiGraph.nodes(data=False)
Return a list of the nodes in the graph.

Parameters data (boolean, optional (default=False)) – If False return a list of
nodes. If True return a two-tuple of node and node data dictionary

Returns nlist – A list of nodes. If data=True a list of two-tuples containing (node, node data dictio-
nary).

Return type list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

nodes_iter

MultiDiGraph.nodes_iter(data=False)
Return an iterator over the nodes.

Parameters data (boolean, optional (default=False)) – If False the iterator returns
nodes. If True return a two-tuple of node and node data dictionary

Returns niter – An iterator over nodes. If data=True the iterator gives two-tuples containing (node,
node data, dictionary)

Return type iterator

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.
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>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

__iter__

MultiDiGraph.__iter__()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter – An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

edges

MultiDiGraph.edges(nbunch=None, data=False, keys=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (bool, optional (default=False)) – Return two tuples (u,v) (False) or
three-tuples (u,v,data) (True).

• keys (bool, optional (default=False)) – Return two tuples (u,v) (False) or
three-tuples (u,v,key) (True).

Returns edge_list – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is
not specified.

Return type list of edge tuples

See also:

edges_iter() return an iterator over the edges
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Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True,keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

edges_iter

MultiDiGraph.edges_iter(nbunch=None, data=False, keys=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

See also:

edges() return a list of edges
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Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

out_edges

MultiDiGraph.out_edges(nbunch=None, keys=False, data=False)
Return a list of the outgoing edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (bool, optional (default=False)) – If True, return edge attribute dict
with each edge.

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

Returns out_edges – An listr of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type list

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs edges() is the same as
out_edges().

See also:

in_edges() return a list of incoming edges
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out_edges_iter

MultiDiGraph.out_edges_iter(nbunch=None, data=False, keys=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (string or bool, optional (default=False)) – The edge attribute
returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

See also:

edges() return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
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in_edges

MultiDiGraph.in_edges(nbunch=None, keys=False, data=False)
Return a list of the incoming edges.

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (bool, optional (default=False)) – If True, return edge attribute dict
with each edge.

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

Returns in_edges – A list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type list

See also:

out_edges() return a list of outgoing edges

in_edges_iter

MultiDiGraph.in_edges_iter(nbunch=None, data=False, keys=False)
Return an iterator over the incoming edges.

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A
container of nodes. The container will be iterated through once.

• data (bool, optional (default=False)) – If True, return edge attribute dict
with each edge.

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

Returns in_edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

See also:

edges_iter() return an iterator of edges

get_edge_data

MultiDiGraph.get_edge_data(u, v, key=None, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters

• v (u,) –

• default (any Python object (default=None)) – Value to return if the edge
(u,v) is not found.
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• key (hashable identifier, optional (default=None)) – Return data only
for the edge with specified key.

Returns edge_dict – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that
dictionary,

>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

neighbors

MultiDiGraph.neighbors(n)
Return a list of successor nodes of n.

neighbors() and successors() are the same function.

neighbors_iter

MultiDiGraph.neighbors_iter(n)
Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.
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__getitem__

MultiDiGraph.__getitem__(n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n (node) – A node in the graph.

Returns adj_dict – The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

successors

MultiDiGraph.successors(n)
Return a list of successor nodes of n.

neighbors() and successors() are the same function.

successors_iter

MultiDiGraph.successors_iter(n)
Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

predecessors

MultiDiGraph.predecessors(n)
Return a list of predecessor nodes of n.

predecessors_iter

MultiDiGraph.predecessors_iter(n)
Return an iterator over predecessor nodes of n.
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adjacency_list

MultiDiGraph.adjacency_list()
Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list – The adjacency structure of the graph as a list of lists.

Return type lists of lists

See also:

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

adjacency_iter

MultiDiGraph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

See also:

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

MultiDiGraph.nbunch_iter(nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) –
A container of nodes. The container will be iterated through once.
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Returns niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None,
iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is
not hashable.

See also:

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

MultiDiGraph.has_node(n) Return True if the graph contains the node n.
MultiDiGraph.__contains__(n) Return True if n is a node, False otherwise.
MultiDiGraph.has_edge(u, v[, key]) Return True if the graph has an edge between nodes u and v.
MultiDiGraph.order() Return the number of nodes in the graph.
MultiDiGraph.number_of_nodes() Return the number of nodes in the graph.
MultiDiGraph.__len__() Return the number of nodes.
MultiDiGraph.degree([nbunch, weight]) Return the degree of a node or nodes.
MultiDiGraph.degree_iter([nbunch, weight]) Return an iterator for (node, degree).
MultiDiGraph.in_degree([nbunch, weight]) Return the in-degree of a node or nodes.
MultiDiGraph.in_degree_iter([nbunch, weight]) Return an iterator for (node, in-degree).
MultiDiGraph.out_degree([nbunch, weight]) Return the out-degree of a node or nodes.
MultiDiGraph.out_degree_iter([nbunch, weight]) Return an iterator for (node, out-degree).
MultiDiGraph.size([weight]) Return the number of edges.
MultiDiGraph.number_of_edges([u, v]) Return the number of edges between two nodes.
MultiDiGraph.nodes_with_selfloops() Return a list of nodes with self loops.
MultiDiGraph.selfloop_edges([data, keys, ...]) Return a list of selfloop edges.
MultiDiGraph.number_of_selfloops() Return the number of selfloop edges.

has_node

MultiDiGraph.has_node(n)
Return True if the graph contains the node n.

Parameters n (node) –

Examples
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>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

__contains__

MultiDiGraph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

has_edge

MultiDiGraph.has_edge(u, v, key=None)
Return True if the graph has an edge between nodes u and v.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers.

• key (hashable identifier, optional (default=None)) – If specified re-
turn True only if the edge with key is found.

Returns edge_ind – True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True
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The following syntax are equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

order

MultiDiGraph.order()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

number_of_nodes(), __len__()

number_of_nodes

MultiDiGraph.number_of_nodes()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

__len__

MultiDiGraph.__len__()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
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degree

MultiDiGraph.degree(nbunch=None, weight=None)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and degree as values or a number if a single node is
specified.

Return type dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

degree_iter

MultiDiGraph.degree_iter(nbunch=None, weight=None)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights.

Returns nd_iter – The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:

degree()
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Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

in_degree

MultiDiGraph.in_degree(nbunch=None, weight=None)
Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and in-degree as values or a number if a single node
is specified.

Return type dictionary, or number

See also:

degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]

in_degree_iter

MultiDiGraph.in_degree_iter(nbunch=None, weight=None)
Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.
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• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, in-degree).

Return type an iterator

See also:

degree(), in_degree(), out_degree(), out_degree_iter()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]

out_degree

MultiDiGraph.out_degree(nbunch=None, weight=None)
Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and out-degree as values or a number if a single node
is specified.

Return type dictionary, or number

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]
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out_degree_iter

MultiDiGraph.out_degree_iter(nbunch=None, weight=None)
Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A
container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights.

Returns nd_iter – The iterator returns two-tuples of (node, out-degree).

Return type an iterator

See also:

degree(), in_degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]

size

MultiDiGraph.size(weight=None)
Return the number of edges.

Parameters weight (string or None, optional (default=None)) – The edge at-
tribute that holds the numerical value used as a weight. If None, then each edge has weight
1.

Returns nedges – The number of edges or sum of edge weights in the graph.

Return type int

See also:

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
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>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

number_of_edges

MultiDiGraph.number_of_edges(u=None, v=None)
Return the number of edges between two nodes.

Parameters v (u,) – If u and v are specified, return the number of edges between u and v. Otherwise
return the total number of all edges.

Returns nedges – The number of edges in the graph. If nodes u and v are specified return the
number of edges between those nodes.

Return type int

See also:

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

nodes_with_selfloops

MultiDiGraph.nodes_with_selfloops()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist – A list of nodes with self loops.

Return type list

See also:

selfloop_edges(), number_of_selfloops()
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Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

selfloop_edges

MultiDiGraph.selfloop_edges(data=False, keys=False, default=None)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters

• data (bool, optional (default=False)) – Return selfloop edges as two tuples
(u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue)
(data=’attrname’)

• default (value, optional (default=None)) – Value used for edges that dont
have the requested attribute. Only relevant if data is not True or False.

• keys (bool, optional (default=False)) – If True, return edge keys with each
edge.

Returns edgelist – A list of all selfloop edges.

Return type list of edge tuples

See also:

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]

number_of_selfloops

MultiDiGraph.number_of_selfloops()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops – The number of selfloops.
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Return type int

See also:

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

Making copies and subgraphs

MultiDiGraph.copy() Return a copy of the graph.
MultiDiGraph.to_undirected([reciprocal]) Return an undirected representation of the digraph.
MultiDiGraph.to_directed() Return a directed copy of the graph.
MultiDiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
MultiDiGraph.reverse([copy]) Return the reverse of the graph.

copy

MultiDiGraph.copy()
Return a copy of the graph.

Returns G – A copy of the graph.

Return type Graph

See also:

to_directed() return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

to_undirected

MultiDiGraph.to_undirected(reciprocal=False)
Return an undirected representation of the digraph.
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Parameters reciprocal (bool (optional)) – If True only keep edges that appear in both
directions in the original digraph.

Returns G – An undirected graph with the same name and nodes and with edge (u,v,data) if either
(u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is
different, only one edge is created with an arbitrary choice of which edge data to use. You must
check and correct for this manually if desired.

Return type MultiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not
transfer to the MultiDiGraph created by this method.

to_directed

MultiDiGraph.to_directed()
Return a directed copy of the graph.

Returns G – A deepcopy of the graph.

Return type MultiDiGraph

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a
combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the
edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy
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>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

subgraph

MultiDiGraph.subgraph(nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch (list, iterable) – A container of nodes which will be iterated through
once.

Returns G – A subgraph of the graph with the same edge attributes.

Return type Graph

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([ n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

reverse

MultiDiGraph.reverse(copy=True)
Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters copy (bool optional (default=True)) – If True, return a new DiGraph
holding the reversed edges. If False, reverse the reverse graph is created using the original
graph (this changes the original graph).
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CHAPTER 4

Algorithms

4.1 Approximation

4.1.1 Connectivity

Fast approximation for node connectivity

all_pairs_node_connectivity(G[, nbunch, cutoff]) Compute node connectivity between all pairs of nodes.
local_node_connectivity(G, source, target[, ...]) Compute node connectivity between source and target.
node_connectivity(G[, s, t]) Returns an approximation for node connectivity for a graph or digraph G.

all_pairs_node_connectivity

all_pairs_node_connectivity(G, nbunch=None, cutoff=None)
Compute node connectivity between all pairs of nodes.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of
nodes that must be removed (minimum separating cutset) to disconnect them. By Menger’s theorem, this is
equal to the number of node independent paths (paths that share no nodes other than source and target). Which
is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent
paths between two nodes 1. It works for both directed and undirected graphs.

Parameters

• G (NetworkX graph) –

• nbunch (container) – Container of nodes. If provided node connectivity will be com-
puted only over pairs of nodes in nbunch.

• cutoff (integer) – Maximum node connectivity to consider. If None, the minimum
degree of source or target is used as a cutoff in each pair of nodes. Default value None.

Returns K – Dictionary, keyed by source and target, of pairwise node connectivity

Return type dictionary

See also:

local_node_connectivity(), all_pairs_node_connectivity()
1 White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035

http://eclectic.ss.uci.edu/~drwhite/working.pdf
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local_node_connectivity

local_node_connectivity(G, source, target, cutoff=None)
Compute node connectivity between source and target.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of
nodes that must be removed (minimum separating cutset) to disconnect them. By Menger’s theorem, this is
equal to the number of node independent paths (paths that share no nodes other than source and target). Which
is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent
paths between two nodes 1. It works for both directed and undirected graphs.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for node connectivity

• target (node) – Ending node for node connectivity

• cutoff (integer) – Maximum node connectivity to consider. If None, the minimum
degree of source or target is used as a cutoff. Default value None.

Returns k – pairwise node connectivity

Return type integer

Examples

>>> # Platonic icosahedral graph has node connectivity 5
>>> # for each non adjacent node pair
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.local_node_connectivity(G, 0, 6)
5

Notes

This algorithm 1 finds node independents paths between two nodes by computing their shortest path using BFS,
marking the nodes of the path found as ‘used’ and then searching other shortest paths excluding the nodes
marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path
were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound
on node connectivity.

Note that the authors propose a further refinement, losing accuracy and gaining speed, which is not implemented
yet.

See also:

all_pairs_node_connectivity(), node_connectivity()
1 White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035

http://eclectic.ss.uci.edu/~drwhite/working.pdf
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node_connectivity

node_connectivity(G, s=None, t=None)
Returns an approximation for node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it
trivial. By Menger’s theorem, this is equal to the number of node independent paths (paths that share no nodes
other than source and target).

If source and target nodes are provided, this function returns the local node connectivity: the minimum number
of nodes that must be removed to break all paths from source to target in G.

This algorithm is based on a fast approximation that gives an strict lower bound on the actual number of node
independent paths between two nodes 1. It works for both directed and undirected graphs.

Parameters

• G (NetworkX graph) – Undirected graph

• s (node) – Source node. Optional. Default value: None.

• t (node) – Target node. Optional. Default value: None.

Returns K – Node connectivity of G, or local node connectivity if source and target are provided.

Return type integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.node_connectivity(G)
5

Notes

This algorithm 1 finds node independents paths between two nodes by computing their shortest path using BFS,
marking the nodes of the path found as ‘used’ and then searching other shortest paths excluding the nodes
marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path
were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound
on node connectivity.

See also:

all_pairs_node_connectivity(), local_node_connectivity()

References

4.1.2 K-components

Fast approximation for k-component structure

1 White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf
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k_components(G[, min_density]) Returns the approximate k-component structure of a graph G.

k_components

k_components(G, min_density=0.95)
Returns the approximate k-component structure of a graph G.

A 𝑘-component is a maximal subgraph of a graph G that has, at least, node connectivity 𝑘: we need to remove at
least 𝑘 nodes to break it into more components. 𝑘-components have an inherent hierarchical structure because
they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which
can contain one or more 3-components, and so forth.

This implementation is based on the fast heuristics to approximate the 𝑘-component sturcture of a graph 1.
Which, in turn, it is based on a fast approximation algorithm for finding good lower bounds of the number of
node independent paths between two nodes 2.

Parameters

• G (NetworkX graph) – Undirected graph

• min_density (Float) – Density relaxation treshold. Default value 0.95

Returns k_components – Dictionary with connectivity level 𝑘 as key and a list of sets of nodes that
form a k-component of level 𝑘 as values.

Return type dict

Examples

>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> from networkx.algorithms import approximation as apxa
>>> G = nx.petersen_graph()
>>> k_components = apxa.k_components(G)

Notes

The logic of the approximation algorithm for computing the 𝑘-component structure 1 is based on repeatedly
applying simple and fast algorithms for 𝑘-cores and biconnected components in order to narrow down the
number of pairs of nodes over which we have to compute White and Newman’s approximation algorithm for
finding node independent paths 2. More formally, this algorithm is based on Whitney’s theorem, which states
an inclusion relation among node connectivity, edge connectivity, and minimum degree for any graph G. This
theorem implies that every 𝑘-component is nested inside a 𝑘-edge-component, which in turn, is contained in a
𝑘-core. Thus, this algorithm computes node independent paths among pairs of nodes in each biconnected part
of each 𝑘-core, and repeats this procedure for each 𝑘 from 3 to the maximal core number of a node in the input
graph.

Because, in practice, many nodes of the core of level 𝑘 inside a bicomponent actually are part of a component
of level k, the auxiliary graph needed for the algorithm is likely to be very dense. Thus, we use a complement
graph data structure (see 𝐴𝑛𝑡𝑖𝐺𝑟𝑎𝑝ℎ) to save memory. AntiGraph only stores information of the edges that are

1 Torrents, J. and F. Ferraro (2015) Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1
2 White, Douglas R., and Mark Newman (2001) A Fast Algorithm for Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035

http://eclectic.ss.uci.edu/~drwhite/working.pdf
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not present in the actual auxiliary graph. When applying algorithms to this complement graph data structure, it
behaves as if it were the dense version.

See also:

k_components()

References

4.1.3 Clique

Cliques.

max_clique(G) Find the Maximum Clique
clique_removal(G) Repeatedly remove cliques from the graph.

max_clique

max_clique(G)
Find the Maximum Clique

Finds the 𝑂(|𝑉 |/(𝑙𝑜𝑔|𝑉 |)2) apx of maximum clique/independent set in the worst case.

Parameters G (NetworkX graph) – Undirected graph

Returns clique – The apx-maximum clique of the graph

Return type set

Notes

A clique in an undirected graph G = (V, E) is a subset of the vertex set 𝐶 ⊆ 𝑉 , such that for every two vertices
in C, there exists an edge connecting the two. This is equivalent to saying that the subgraph induced by C is
complete (in some cases, the term clique may also refer to the subgraph).

A maximum clique is a clique of the largest possible size in a given graph. The clique number 𝜔(𝐺) of a graph
G is the number of vertices in a maximum clique in G. The intersection number of G is the smallest number of
cliques that together cover all edges of G.

http://en.wikipedia.org/wiki/Maximum_clique

References

clique_removal

clique_removal(G)
Repeatedly remove cliques from the graph.

Results in a 𝑂(|𝑉 |/(log |𝑉 |)2) approximation of maximum clique & independent set. Returns the largest inde-
pendent set found, along with found maximal cliques.

Parameters G (NetworkX graph) – Undirected graph

Returns max_ind_cliques – Maximal independent set and list of maximal cliques (sets) in the
graph.
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Return type (set, list) tuple

References

4.1.4 Clustering

average_clustering(G[, trials]) Estimates the average clustering coefficient of G.

average_clustering

average_clustering(G, trials=1000)
Estimates the average clustering coefficient of G.

The local clustering of each node in 𝐺 is the fraction of triangles that actually exist over all possible triangles in
its neighborhood. The average clustering coefficient of a graph 𝐺 is the mean of local clusterings.

This function finds an approximate average clustering coefficient for G by repeating 𝑛 times (defined in 𝑡𝑟𝑖𝑎𝑙𝑠)
the following experiment: choose a node at random, choose two of its neighbors at random, and check if they
are connected. The approximate coefficient is the fraction of triangles found over the number of trials 1.

Parameters

• G (NetworkX graph) –

• trials (integer) – Number of trials to perform (default 1000).

Returns c – Approximated average clustering coefficient.

Return type float

References

4.1.5 Dominating Set

Functions for finding node and edge dominating sets.

A ‘dominating set‘_[1] for an undirected graph *G with vertex set V and edge set E is a subset D of V such that every
vertex not in D is adjacent to at least one member of D. An ‘edge dominating set‘_[2] is a subset *F of E such that
every edge not in F is incident to an endpoint of at least one edge in F.

min_weighted_dominating_set(G[, weight]) Returns a dominating set that approximates the minimum weight node dominating set.
min_edge_dominating_set(G) Return minimum cardinality edge dominating set.

min_weighted_dominating_set

min_weighted_dominating_set(G, weight=None)
Returns a dominating set that approximates the minimum weight node dominating set.

Parameters

• G (NetworkX graph) – Undirected graph.

1 Schank, Thomas, and Dorothea Wagner. Approximating clustering coefficient and transitivity. Universität Karlsruhe, Fakultät für Informatik,
2004. http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf
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• weight (string) – The node attribute storing the weight of an edge. If provided, the
node attribute with this key must be a number for each node. If not provided, each node is
assumed to have weight one.

Returns min_weight_dominating_set – A set of nodes, the sum of whose weights is no more than
(log𝑤(𝑉 ))𝑤(𝑉 *), where 𝑤(𝑉 ) denotes the sum of the weights of each node in the graph and
𝑤(𝑉 *) denotes the sum of the weights of each node in the minimum weight dominating set.

Return type set

Notes

This algorithm computes an approximate minimum weighted dominating set for the graph G. The returned
solution has weight (log𝑤(𝑉 ))𝑤(𝑉 *), where 𝑤(𝑉 ) denotes the sum of the weights of each node in the graph
and 𝑤(𝑉 *) denotes the sum of the weights of each node in the minimum weight dominating set for the graph.

This implementation of the algorithm runs in 𝑂(𝑚) time, where 𝑚 is the number of edges in the graph.

References

min_edge_dominating_set

min_edge_dominating_set(G)
Return minimum cardinality edge dominating set.

Parameters G (NetworkX graph) – Undirected graph

Returns min_edge_dominating_set – Returns a set of dominating edges whose size is no more
than 2 * OPT.

Return type set

Notes

The algorithm computes an approximate solution to the edge dominating set problem. The result is no more
than 2 * OPT in terms of size of the set. Runtime of the algorithm is 𝑂(|𝐸|).

4.1.6 Independent Set

Independent Set

Independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices
such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at
most one endpoint in I. The size of an independent set is the number of vertices it contains.

A maximum independent set is a largest independent set for a given graph G and its size is denoted 𝛼(G). The problem
of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As
such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph.

http://en.wikipedia.org/wiki/Independent_set_(graph_theory)

Independent set algorithm is based on the following paper:

𝑂(|𝑉 |/(𝑙𝑜𝑔|𝑉 |)2) apx of maximum clique/independent set.
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Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT
Numerical Mathematics, 32(2), 180–196. Springer. doi:10.1007/BF01994876
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maximum_independent_set(G) Return an approximate maximum independent set.

maximum_independent_set

maximum_independent_set(G)
Return an approximate maximum independent set.

Parameters G (NetworkX graph) – Undirected graph

Returns iset – The apx-maximum independent set

Return type Set

Notes

Finds the 𝑂(|𝑉 |/(𝑙𝑜𝑔|𝑉 |)2) apx of independent set in the worst case.

References

4.1.7 Matching

Graph Matching

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a
common vertex.

http://en.wikipedia.org/wiki/Matching_(graph_theory)

min_maximal_matching(G) Returns the minimum maximal matching of G.

min_maximal_matching

min_maximal_matching(G)
Returns the minimum maximal matching of G. That is, out of all maximal matchings of the graph G, the smallest
is returned.

Parameters G (NetworkX graph) – Undirected graph

Returns min_maximal_matching – Returns a set of edges such that no two edges share a common
endpoint and every edge not in the set shares some common endpoint in the set. Cardinality will
be 2*OPT in the worst case.

Return type set

Notes

The algorithm computes an approximate solution fo the minimum maximal cardinality matching problem. The
solution is no more than 2 * OPT in size. Runtime is 𝑂(|𝐸|).
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4.1.8 Ramsey

Ramsey numbers.

ramsey_R2(G) Approximately computes the Ramsey number 𝑅(2; 𝑠, 𝑡) for graph.

ramsey_R2

ramsey_R2(G)
Approximately computes the Ramsey number 𝑅(2; 𝑠, 𝑡) for graph.

Parameters G (NetworkX graph) – Undirected graph

Returns max_pair – Maximum clique, Maximum independent set.

Return type (set, set) tuple

4.1.9 Vertex Cover

Vertex Cover

Given an undirected graph 𝐺 = (𝑉,𝐸) and a function w assigning nonnegative weights to its vertices, find a minimum
weight subset of V such that each edge in E is incident to at least one vertex in the subset.

http://en.wikipedia.org/wiki/Vertex_cover

min_weighted_vertex_cover(G[, weight]) 2-OPT Local Ratio for Minimum Weighted Vertex Cover

min_weighted_vertex_cover

min_weighted_vertex_cover(G, weight=None)
2-OPT Local Ratio for Minimum Weighted Vertex Cover

Find an approximate minimum weighted vertex cover of a graph.

Parameters

• G (NetworkX graph) – Undirected graph

• weight (None or string, optional (default = None)) – If None, every
edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any
edge attribute not present defaults to 1.

Returns min_weighted_cover – Returns a set of vertices whose weight sum is no more than 2 *
OPT.

Return type set

Notes

Local-Ratio algorithm for computing an approximate vertex cover. Algorithm greedily reduces the costs over
edges and iteratively builds a cover. Worst-case runtime is 𝑂(|𝐸|).
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4.2 Assortativity

4.2.1 Assortativity

degree_assortativity_coefficient(G[, x, y, ...]) Compute degree assortativity of graph.
attribute_assortativity_coefficient(G, attribute) Compute assortativity for node attributes.
numeric_assortativity_coefficient(G, attribute) Compute assortativity for numerical node attributes.
degree_pearson_correlation_coefficient(G[, ...]) Compute degree assortativity of graph.

degree_assortativity_coefficient

degree_assortativity_coefficient(G, x=’out’, y=’in’, weight=None, nodes=None)
Compute degree assortativity of graph.

Assortativity measures the similarity of connections in the graph with respect to the node degree.

Parameters

• G (NetworkX graph) –

• x (string (’in’,’out’)) – The degree type for source node (directed graphs only).

• y (string (’in’,’out’)) – The degree type for target node (directed graphs only).

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

• nodes (list or iterable (optional)) – Compute degree assortativity only for
nodes in container. The default is all nodes.

Returns r – Assortativity of graph by degree.

Return type float

Examples

>>> G=nx.path_graph(4)
>>> r=nx.degree_assortativity_coefficient(G)
>>> print("%3.1f"%r)
-0.5

See also:

attribute_assortativity_coefficient(), numeric_assortativity_coefficient(),
neighbor_connectivity(), degree_mixing_dict(), degree_mixing_matrix()
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Notes

This computes Eq. (21) in Ref. 1 , where e is the joint probability distribution (mixing matrix) of the degrees. If
G is directed than the matrix e is the joint probability of the user-specified degree type for the source and target.

References

attribute_assortativity_coefficient

attribute_assortativity_coefficient(G, attribute, nodes=None)
Compute assortativity for node attributes.

Assortativity measures the similarity of connections in the graph with respect to the given attribute.

Parameters

• G (NetworkX graph) –

• attribute (string) – Node attribute key

• nodes (list or iterable (optional)) – Compute attribute assortativity for
nodes in container. The default is all nodes.

Returns r – Assortativity of graph for given attribute

Return type float

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.attribute_assortativity_coefficient(G,'color'))
1.0

Notes

This computes Eq. (2) in Ref. 1 , trace(M)-sum(M))/(1-sum(M), where M is the joint probability distribution
(mixing matrix) of the specified attribute.

References

numeric_assortativity_coefficient

numeric_assortativity_coefficient(G, attribute, nodes=None)
Compute assortativity for numerical node attributes.

Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute.

Parameters

• G (NetworkX graph) –
1 M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003
1 M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003
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• attribute (string) – Node attribute key

• nodes (list or iterable (optional)) – Compute numeric assortativity only for
attributes of nodes in container. The default is all nodes.

Returns r – Assortativity of graph for given attribute

Return type float

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from([2,3],size=3)
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.numeric_assortativity_coefficient(G,'size'))
1.0

Notes

This computes Eq. (21) in Ref. 1 , for the mixing matrix of of the specified attribute.

References

degree_pearson_correlation_coefficient

degree_pearson_correlation_coefficient(G, x=’out’, y=’in’, weight=None, nodes=None)
Compute degree assortativity of graph.

Assortativity measures the similarity of connections in the graph with respect to the node degree.

This is the same as degree_assortativity_coefficient but uses the potentially faster scipy.stats.pearsonr function.

Parameters

• G (NetworkX graph) –

• x (string (’in’,’out’)) – The degree type for source node (directed graphs only).

• y (string (’in’,’out’)) – The degree type for target node (directed graphs only).

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

• nodes (list or iterable (optional)) – Compute pearson correlation of de-
grees only for specified nodes. The default is all nodes.

Returns r – Assortativity of graph by degree.

Return type float

1 M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003
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Examples

>>> G=nx.path_graph(4)
>>> r=nx.degree_pearson_correlation_coefficient(G)
>>> print("%3.1f"%r)
-0.5

Notes

This calls scipy.stats.pearsonr.

References

4.2.2 Average neighbor degree

average_neighbor_degree(G[, source, target, ...]) Returns the average degree of the neighborhood of each node.

average_neighbor_degree

average_neighbor_degree(G, source=’out’, target=’out’, nodes=None, weight=None)
Returns the average degree of the neighborhood of each node.

The average degree of a node 𝑖 is

𝑘𝑛𝑛,𝑖 =
1

|𝑁(𝑖)|
∑︁

𝑗∈𝑁(𝑖)

𝑘𝑗

where 𝑁(𝑖) are the neighbors of node 𝑖 and 𝑘𝑗 is the degree of node 𝑗 which belongs to 𝑁(𝑖). For weighted
graphs, an analogous measure can be defined 1,

𝑘𝑤𝑛𝑛,𝑖 =
1

𝑠𝑖

∑︁
𝑗∈𝑁(𝑖)

𝑤𝑖𝑗𝑘𝑗

where 𝑠𝑖 is the weighted degree of node 𝑖, 𝑤𝑖𝑗 is the weight of the edge that links 𝑖 and 𝑗 and 𝑁(𝑖) are the
neighbors of node 𝑖.

Parameters

• G (NetworkX graph) –

• source (string ("in"|"out")) – Directed graphs only. Use “in”- or “out”-degree
for source node.

• target (string ("in"|"out")) – Directed graphs only. Use “in”- or “out”-degree
for target node.

• nodes (list or iterable, optional) – Compute neighbor degree for specified
nodes. The default is all nodes in the graph.

weight [string or None, optional (default=None)] The edge attribute that holds the numerical value used as a
weight. If None, then each edge has weight 1.

1 A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks”. PNAS 101 (11):
3747–3752 (2004).
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Returns d – A dictionary keyed by node with average neighbors degree value.

Return type dict

Examples

>>> G=nx.path_graph(4)
>>> G.edge[0][1]['weight'] = 5
>>> G.edge[2][3]['weight'] = 3

>>> nx.average_neighbor_degree(G)
{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}
>>> nx.average_neighbor_degree(G, weight='weight')
{0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}

>>> G=nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> nx.average_neighbor_degree(G, source='in', target='in')
{0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0}

>>> nx.average_neighbor_degree(G, source='out', target='out')
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}

Notes

For directed graphs you can also specify in-degree or out-degree by passing keyword arguments.

See also:

average_degree_connectivity()

References

4.2.3 Average degree connectivity

average_degree_connectivity(G[, source, ...]) Compute the average degree connectivity of graph.
k_nearest_neighbors(G[, source, target, ...]) Compute the average degree connectivity of graph.

average_degree_connectivity

average_degree_connectivity(G, source=’in+out’, target=’in+out’, nodes=None, weight=None)
Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted
graphs, an analogous measure can be computed using the weighted average neighbors degree defined in 1, for a
node 𝑖, as

𝑘𝑤𝑛𝑛,𝑖 =
1

𝑠𝑖

∑︁
𝑗∈𝑁(𝑖)

𝑤𝑖𝑗𝑘𝑗

1 A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks”. PNAS 101 (11):
3747–3752 (2004).
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where 𝑠𝑖 is the weighted degree of node 𝑖, 𝑤𝑖𝑗 is the weight of the edge that links 𝑖 and 𝑗, and 𝑁(𝑖) are the
neighbors of node 𝑖.

Parameters

• G (NetworkX graph) –

• source ("in"|"out"|"in+out" (default:"in+out")) – Directed graphs
only. Use “in”- or “out”-degree for source node.

• target ("in"|"out"|"in+out" (default:"in+out") – Directed graphs only.
Use “in”- or “out”-degree for target node.

• nodes (list or iterable (optional)) – Compute neighbor connectivity for
these nodes. The default is all nodes.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d – A dictionary keyed by degree k with the value of average connectivity.

Return type dict

Examples

>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}

See also:

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also available as k_nearest_neighbors.

References

k_nearest_neighbors

k_nearest_neighbors(G, source=’in+out’, target=’in+out’, nodes=None, weight=None)
Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted
graphs, an analogous measure can be computed using the weighted average neighbors degree defined in 1, for a
node 𝑖, as

𝑘𝑤𝑛𝑛,𝑖 =
1

𝑠𝑖

∑︁
𝑗∈𝑁(𝑖)

𝑤𝑖𝑗𝑘𝑗

1 A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks”. PNAS 101 (11):
3747–3752 (2004).
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where 𝑠𝑖 is the weighted degree of node 𝑖, 𝑤𝑖𝑗 is the weight of the edge that links 𝑖 and 𝑗, and 𝑁(𝑖) are the
neighbors of node 𝑖.

Parameters

• G (NetworkX graph) –

• source ("in"|"out"|"in+out" (default:"in+out")) – Directed graphs
only. Use “in”- or “out”-degree for source node.

• target ("in"|"out"|"in+out" (default:"in+out") – Directed graphs only.
Use “in”- or “out”-degree for target node.

• nodes (list or iterable (optional)) – Compute neighbor connectivity for
these nodes. The default is all nodes.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d – A dictionary keyed by degree k with the value of average connectivity.

Return type dict

Examples

>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}

See also:

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also available as k_nearest_neighbors.

References

4.2.4 Mixing

attribute_mixing_matrix(G, attribute[, ...]) Return mixing matrix for attribute.
degree_mixing_matrix(G[, x, y, weight, ...]) Return mixing matrix for attribute.
degree_mixing_dict(G[, x, y, weight, nodes, ...]) Return dictionary representation of mixing matrix for degree.
attribute_mixing_dict(G, attribute[, nodes, ...]) Return dictionary representation of mixing matrix for attribute.

attribute_mixing_matrix

attribute_mixing_matrix(G, attribute, nodes=None, mapping=None, normalized=True)
Return mixing matrix for attribute.

Parameters
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• G (graph) – NetworkX graph object.

• attribute (string) – Node attribute key.

• nodes (list or iterable (optional)) – Use only nodes in container to build
the matrix. The default is all nodes.

• mapping (dictionary, optional) – Mapping from node attribute to integer index
in matrix. If not specified, an arbitrary ordering will be used.

• normalized (bool (default=False)) – Return counts if False or probabilities if
True.

Returns m – Counts or joint probability of occurrence of attribute pairs.

Return type numpy array

degree_mixing_matrix

degree_mixing_matrix(G, x=’out’, y=’in’, weight=None, nodes=None, normalized=True)
Return mixing matrix for attribute.

Parameters

• G (graph) – NetworkX graph object.

• x (string (’in’,’out’)) – The degree type for source node (directed graphs only).

• y (string (’in’,’out’)) – The degree type for target node (directed graphs only).

• nodes (list or iterable (optional)) – Build the matrix using only nodes in
container. The default is all nodes.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

• normalized (bool (default=False)) – Return counts if False or probabilities if
True.

Returns m – Counts, or joint probability, of occurrence of node degree.

Return type numpy array

degree_mixing_dict

degree_mixing_dict(G, x=’out’, y=’in’, weight=None, nodes=None, normalized=False)
Return dictionary representation of mixing matrix for degree.

Parameters

• G (graph) – NetworkX graph object.

• x (string (’in’,’out’)) – The degree type for source node (directed graphs only).

• y (string (’in’,’out’)) – The degree type for target node (directed graphs only).

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

• normalized (bool (default=False)) – Return counts if False or probabilities if
True.
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Returns d – Counts or joint probability of occurrence of degree pairs.

Return type dictionary

attribute_mixing_dict

attribute_mixing_dict(G, attribute, nodes=None, normalized=False)
Return dictionary representation of mixing matrix for attribute.

Parameters

• G (graph) – NetworkX graph object.

• attribute (string) – Node attribute key.

• nodes (list or iterable (optional)) – Unse nodes in container to build the
dict. The default is all nodes.

• normalized (bool (default=False)) – Return counts if False or probabilities if
True.

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edge(1,3)
>>> d=nx.attribute_mixing_dict(G,'color')
>>> print(d['red']['blue'])
1
>>> print(d['blue']['red']) # d symmetric for undirected graphs
1

Returns d – Counts or joint probability of occurrence of attribute pairs.

Return type dictionary

4.3 Bipartite

This module provides functions and operations for bipartite graphs. Bipartite graphs 𝐵 = (𝑈, 𝑉,𝐸) have two node
sets 𝑈, 𝑉 and edges in 𝐸 that only connect nodes from opposite sets. It is common in the literature to use an spatial
analogy referring to the two node sets as top and bottom nodes.

The bipartite algorithms are not imported into the networkx namespace at the top level so the easiest way to use them
is with:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite

NetworkX does not have a custom bipartite graph class but the Graph() or DiGraph() classes can be used to represent
bipartite graphs. However, you have to keep track of which set each node belongs to, and make sure that there is no
edge between nodes of the same set. The convention used in NetworkX is to use a node attribute named “bipartite”
with values 0 or 1 to identify the sets each node belongs to.

For example:
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>>> B = nx.Graph()
>>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite"
>>> B.add_nodes_from(['a','b','c'], bipartite=1)
>>> B.add_edges_from([(1,'a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,'a')])

Many algorithms of the bipartite module of NetworkX require, as an argument, a container with all the nodes that
belong to one set, in addition to the bipartite graph 𝐵. If 𝐵 is connected, you can find the node sets using a two-
coloring algorithm:

>>> nx.is_connected(B)
True
>>> bottom_nodes, top_nodes = bipartite.sets(B)

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) [’a’, ‘c’, ‘b’]

However, if the input graph is not connected, there are more than one possible colorations. Thus, the following result
is correct:

>>> B.remove_edge(2,'c')
>>> nx.is_connected(B)
False
>>> bottom_nodes, top_nodes = bipartite.sets(B)

list(top_nodes) [1, 2, 4, ‘c’] list(bottom_nodes) [’a’, 3, ‘b’]

Using the “bipartite” node attribute, you can easily get the two node sets:

>>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0)
>>> bottom_nodes = set(B) - top_nodes

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) [’a’, ‘c’, ‘b’]

So you can easily use the bipartite algorithms that require, as an argument, a container with all nodes that belong to
one node set:

>>> print(round(bipartite.density(B, bottom_nodes),2))
0.42
>>> G = bipartite.projected_graph(B, top_nodes)
>>> G.edges()
[(1, 2), (1, 4)]

All bipartite graph generators in NetworkX build bipartite graphs with the “bipartite” node attribute. Thus, you can
use the same approach:

>>> RB = bipartite.random_graph(5, 7, 0.2)
>>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0)
>>> RB_bottom = set(RB) - RB_top
>>> list(RB_top)
[0, 1, 2, 3, 4]
>>> list(RB_bottom)
[5, 6, 7, 8, 9, 10, 11]

For other bipartite graph generators see the bipartite section of Graph generators.

4.3.1 Basic functions

Bipartite Graph Algorithms
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is_bipartite(G) Returns True if graph G is bipartite, False if not.
is_bipartite_node_set(G, nodes) Returns True if nodes and G/nodes are a bipartition of G.
sets(G) Returns bipartite node sets of graph G.
color(G) Returns a two-coloring of the graph.
density(B, nodes) Return density of bipartite graph B.
degrees(B, nodes[, weight]) Return the degrees of the two node sets in the bipartite graph B.

is_bipartite

is_bipartite(G)
Returns True if graph G is bipartite, False if not.

Parameters G (NetworkX graph) –

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> print(bipartite.is_bipartite(G))
True

See also:

color(), is_bipartite_node_set()

is_bipartite_node_set

is_bipartite_node_set(G, nodes)
Returns True if nodes and G/nodes are a bipartition of G.

Parameters

• G (NetworkX graph) –

• nodes (list or container) – Check if nodes are a one of a bipartite set.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X = set([1,3])
>>> bipartite.is_bipartite_node_set(G,X)
True

Notes

For connected graphs the bipartite sets are unique. This function handles disconnected graphs.
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sets

sets(G)
Returns bipartite node sets of graph G.

Raises an exception if the graph is not bipartite.

Parameters G (NetworkX graph) –

Returns (X,Y) – One set of nodes for each part of the bipartite graph.

Return type two-tuple of sets

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]

See also:

color()

color

color(G)
Returns a two-coloring of the graph.

Raises an exception if the graph is not bipartite.

Parameters G (NetworkX graph) –

Returns color – A dictionary keyed by node with a 1 or 0 as data for each node color.

Return type dictionary

Raises NetworkXError if the graph is not two-colorable.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
{0: 1, 1: 0, 2: 1, 3: 0}

You can use this to set a node attribute indicating the biparite set:

>>> nx.set_node_attributes(G, 'bipartite', c)
>>> print(G.node[0]['bipartite'])
1
>>> print(G.node[1]['bipartite'])
0
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density

density(B, nodes)
Return density of bipartite graph B.

Parameters

• G (NetworkX graph) –

• nodes (list or container) – Nodes in one set of the bipartite graph.

Returns d – The bipartite density

Return type float

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0

See also:

color()

degrees

degrees(B, nodes, weight=None)
Return the degrees of the two node sets in the bipartite graph B.

Parameters

• G (NetworkX graph) –

• nodes (list or container) – Nodes in one set of the bipartite graph.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1. The
degree is the sum of the edge weights adjacent to the node.

Returns (degX,degY) – The degrees of the two bipartite sets as dictionaries keyed by node.

Return type tuple of dictionaries

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}
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See also:

color(), density()

4.3.2 Matching

Provides functions for computing a maximum cardinality matching in a bipartite graph.

If you don’t care about the particular implementation of the maximum matching algorithm, simply use the
maximum_matching(). If you do care, you can import one of the named maximum matching algorithms directly.

For example, to find a maximum matching in the complete bipartite graph with two vertices on the left and three
vertices on the right:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> left, right = nx.bipartite.sets(G)
>>> list(left)
[0, 1]
>>> list(right)
[2, 3, 4]
>>> nx.bipartite.maximum_matching(G)
{0: 2, 1: 3, 2: 0, 3: 1}

The dictionary returned by maximum_matching() includes a mapping for vertices in both the left and right vertex
sets.

eppstein_matching(G) Returns the maximum cardinality matching of the bipartite graph 𝐺.
hopcroft_karp_matching(G) Returns the maximum cardinality matching of the bipartite graph 𝐺.
to_vertex_cover(G, matching) Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph 𝐺.

eppstein_matching

eppstein_matching(G)
Returns the maximum cardinality matching of the bipartite graph 𝐺.

Parameters G (NetworkX graph) – Undirected bipartite graph

Returns

matches –

The matching is returned as a dictionary, 𝑚𝑎𝑡𝑐ℎ𝑒𝑠, such that matches[v] == w if node v is
matched to node w. Unmatched nodes do not occur as a key in mate.

Return type dictionary

Notes

This function is implemented with David Eppstein’s version of the algorithm Hopcroft–Karp algorithm (see
hopcroft_karp_matching()), which originally appeared in the Python Algorithms and Data Structures
library (PADS).

See also:

hopcroft_karp_matching()
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hopcroft_karp_matching

hopcroft_karp_matching(G)
Returns the maximum cardinality matching of the bipartite graph 𝐺.

Parameters G (NetworkX graph) – Undirected bipartite graph

Returns

matches –

The matching is returned as a dictionary, 𝑚𝑎𝑡𝑐ℎ𝑒𝑠, such that matches[v] == w if node v is
matched to node w. Unmatched nodes do not occur as a key in mate.

Return type dictionary

Notes

This function is implemented with the Hopcroft–Karp matching algorithm for bipartite graphs.

See also:

eppstein_matching()

References

to_vertex_cover

to_vertex_cover(G, matching)
Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph 𝐺.

Parameters

• G (NetworkX graph) – Undirected bipartite graph

• matching (dictionary) – A dictionary whose keys are vertices in 𝐺 and whose values
are the distinct neighbors comprising the maximum matching for 𝐺, as returned by, for ex-
ample, maximum_matching(). The dictionary must represent the maximum matching.

Returns

vertex_cover –

The minimum vertex cover in 𝐺.

Return type set

Notes

This function is implemented using the procedure guaranteed by Konig’s theorem, which proves an equivalence
between a maximum matching and a minimum vertex cover in bipartite graphs.

Since a minimum vertex cover is the complement of a maximum independent set for any graph, one can compute
the maximum independent set of a bipartite graph this way:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> matching = nx.bipartite.maximum_matching(G)
>>> vertex_cover = nx.bipartite.to_vertex_cover(G, matching)
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>>> independent_set = set(G) - vertex_cover
>>> print(list(independent_set))
[2, 3, 4]

4.3.3 Matrix

Biadjacency matrices

biadjacency_matrix(G, row_order[, ...]) Return the biadjacency matrix of the bipartite graph G.
from_biadjacency_matrix(A[, create_using, ...]) Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.

biadjacency_matrix

biadjacency_matrix(G, row_order, column_order=None, dtype=None, weight=’weight’, format=’csr’)
Return the biadjacency matrix of the bipartite graph G.

Let 𝐺 = (𝑈, 𝑉,𝐸) be a bipartite graph with node sets 𝑈 = 𝑢1, ..., 𝑢𝑟 and 𝑉 = 𝑣1, ..., 𝑣𝑠. The biadjacency
matrix 1 is the 𝑟 x 𝑠 matrix 𝐵 in which 𝑏𝑖,𝑗 = 1 if, and only if, (𝑢𝑖, 𝑣𝑗) ∈ 𝐸. If the parameter 𝑤𝑒𝑖𝑔ℎ𝑡 is not
𝑁𝑜𝑛𝑒 and matches the name of an edge attribute, its value is used instead of 1.

Parameters

• G (graph) – A NetworkX graph

• row_order (list of nodes) – The rows of the matrix are ordered according to the
list of nodes.

• column_order (list, optional) – The columns of the matrix are ordered according
to the list of nodes. If column_order is None, then the ordering of columns is arbitrary.

• dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize
the array. If None, then the NumPy default is used.

• weight (string or None, optional (default=’weight’)) – The edge
data key used to provide each value in the matrix. If None, then each edge has weight
1.

• format (str in {’bsr’, ’csr’, ’csc’, ’coo’, ’lil’, ’dia’,
’dok’}) – The type of the matrix to be returned (default ‘csr’). For some algorithms
different implementations of sparse matrices can perform better. See 2 for details.

Returns M – Biadjacency matrix representation of the bipartite graph G.

Return type SciPy sparse matrix

Notes

No attempt is made to check that the input graph is bipartite.

For directed bipartite graphs only successors are considered as neighbors. To obtain an adjacency matrix with
ones (or weight values) for both predecessors and successors you have to generate two biadjacency matrices
where the rows of one of them are the columns of the other, and then add one to the transpose of the other.

See also:
1 http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph
2 Scipy Dev. References, “Sparse Matrices”, http://docs.scipy.org/doc/scipy/reference/sparse.html
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adjacency_matrix(), from_biadjacency_matrix()

References

from_biadjacency_matrix

from_biadjacency_matrix(A, create_using=None, edge_attribute=’weight’)
Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.

Parameters

• A (scipy sparse matrix) – A biadjacency matrix representation of a graph

• create_using (NetworkX graph) – Use specified graph for result. The default is
Graph()

• edge_attribute (string) – Name of edge attribute to store matrix numeric value.
The data will have the same type as the matrix entry (int, float, (real,imag)).

Notes

The nodes are labeled with the attribute 𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 set to an integer 0 or 1 representing membership in part 0 or
part 1 of the bipartite graph.

If 𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔 is an instance of networkx.MultiGraph or networkx.MultiDiGraph and the entries
of 𝐴 are of type int, then this function returns a multigraph (of the same type as 𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔) with parallel
edges. In this case, 𝑒𝑑𝑔𝑒𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 will be ignored.

See also:

biadjacency_matrix(), from_numpy_matrix()

References

[1] http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

4.3.4 Projections

One-mode (unipartite) projections of bipartite graphs.

projected_graph(B, nodes[, multigraph]) Returns the projection of B onto one of its node sets.
weighted_projected_graph(B, nodes[, ratio]) Returns a weighted projection of B onto one of its node sets.
collaboration_weighted_projected_graph(B, nodes) Newman’s weighted projection of B onto one of its node sets.
overlap_weighted_projected_graph(B, nodes[, ...]) Overlap weighted projection of B onto one of its node sets.
generic_weighted_projected_graph(B, nodes[, ...]) Weighted projection of B with a user-specified weight function.

projected_graph

projected_graph(B, nodes, multigraph=False)
Returns the projection of B onto one of its node sets.

Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their
attributes and are connected in G if they have a common neighbor in B.
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Parameters

• B (NetworkX graph) – The input graph should be bipartite.

• nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

• multigraph (bool (default=False)) – If True return a multigraph where the mul-
tiple edges represent multiple shared neighbors. They edge key in the multigraph is assigned
to the label of the neighbor.

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph or multigraph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges())
[(1, 3)]

If nodes 𝑎, and 𝑏 are connected through both nodes 1 and 2 then building a multigraph results in two edges in
the projection onto [𝑎,‘b‘]:

>>> B = nx.Graph()
>>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)])
>>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True)
>>> print([sorted((u,v)) for u,v in G.edges()])
[['a', 'b'], ['a', 'b']]

Notes

No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of
the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned
with an edge for every shared neighbor.

Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a
directed path between the nodes.

The graph and node properties are (shallow) copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(),
collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(),
generic_weighted_projected_graph()

weighted_projected_graph

weighted_projected_graph(B, nodes, ratio=False)
Returns a weighted projection of B onto one of its node sets.

The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights
representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared
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neighbors if ratio=True 1. The nodes retain their attributes and are connected in the resulting graph if they have
an edge to a common node in the original graph.

Parameters

• B (NetworkX graph) – The input graph should be bipartite.

• nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

• ratio (Bool (default=False)) – If True, edge weight is the ratio between actual
shared neighbors and possible shared neighbors. If False, edges weight is the number of
shared neighbors.

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.weighted_projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges(data=True))
[(1, 3, {'weight': 1})]
>>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True)
>>> print(G.edges(data=True))
[(1, 3, {'weight': 0.5})]

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set(), sets(), collaboration_weighted_projected_graph(),
overlap_weighted_projected_graph(), generic_weighted_projected_graph(),
projected_graph()

References

collaboration_weighted_projected_graph

collaboration_weighted_projected_graph(B, nodes)
Newman’s weighted projection of B onto one of its node sets.

The collaboration weighted projection is the projection of the bipartite network B onto the specified nodes with
weights assigned using Newman’s collaboration model 1:

𝑤𝑣,𝑢 =
∑︁
𝑘

𝛿𝑤𝑣 𝛿
𝑘
𝑤

𝑘𝑤 − 1

1 Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications.

1 Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
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where 𝑣 and 𝑢 are nodes from the same bipartite node set, and 𝑤 is a node of the opposite node set. The value
𝑘𝑤 is the degree of node 𝑤 in the bipartite network and 𝛿𝑤𝑣 is 1 if node 𝑣 is linked to node 𝑤 in the original
bipartite graph or 0 otherwise.

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in
the original bipartite graph.

Parameters

• B (NetworkX graph) – The input graph should be bipartite.

• nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> B.add_edge(1,5)
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
>>> print(G.nodes())
[0, 2, 4, 5]
>>> for edge in G.edges(data=True): print(edge)
...
(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(),
overlap_weighted_projected_graph(), generic_weighted_projected_graph(),
projected_graph()

References

overlap_weighted_projected_graph

overlap_weighted_projected_graph(B, nodes, jaccard=True)
Overlap weighted projection of B onto one of its node sets.

The overlap weighted projection is the projection of the bipartite network B onto the specified nodes with
weights representing the Jaccard index between the neighborhoods of the two nodes in the original bipartite
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network 1:

𝑤𝑣,𝑢 =
|𝑁(𝑢) ∩𝑁(𝑣)|
|𝑁(𝑢) ∪𝑁(𝑣)|

or if the parameter ‘jaccard’ is False, the fraction of common neighbors by minimum of both nodes degree in
the original bipartite graph 1:

𝑤𝑣,𝑢 =
|𝑁(𝑢) ∩𝑁(𝑣)|

𝑚𝑖𝑛(|𝑁(𝑢)|, |𝑁(𝑣)|)

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in
the original bipartite graph.

Parameters

• B (NetworkX graph) – The input graph should be bipartite.

• nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

• jaccard (Bool (default=True)) –

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4])
>>> print(G.nodes())
[0, 2, 4]
>>> print(G.edges(data=True))
[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False)
>>> print(G.edges(data=True))
[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(),
collaboration_weighted_projected_graph(), generic_weighted_projected_graph(),
projected_graph()

References

generic_weighted_projected_graph

generic_weighted_projected_graph(B, nodes, weight_function=None)
Weighted projection of B with a user-specified weight function.

1 Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications.
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The bipartite network B is projected on to the specified nodes with weights computed by a user-specified func-
tion. This function must accept as a parameter the neighborhood sets of two nodes and return an integer or a
float.

The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node
in the original graph.

Parameters

• B (NetworkX graph) – The input graph should be bipartite.

• nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

• weight_function (function) – This function must accept as parameters the same
input graph that this function, and two nodes; and return an integer or a float. The default
function computes the number of shared neighbors.

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> # Define some custom weight functions
>>> def jaccard(G, u, v):
... unbrs = set(G[u])
... vnbrs = set(G[v])
... return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
...
>>> def my_weight(G, u, v, weight='weight'):
... w = 0
... for nbr in set(G[u]) & set(G[v]):
... w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1)
... return w
...
>>> # A complete bipartite graph with 4 nodes and 4 edges
>>> B = nx.complete_bipartite_graph(2,2)
>>> # Add some arbitrary weight to the edges
>>> for i,(u,v) in enumerate(B.edges()):
... B.edge[u][v]['weight'] = i + 1
...
>>> for edge in B.edges(data=True):
... print(edge)
...
(0, 2, {'weight': 1})
(0, 3, {'weight': 2})
(1, 2, {'weight': 3})
(1, 3, {'weight': 4})
>>> # Without specifying a function, the weight is equal to # shared partners
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1])
>>> print(G.edges(data=True))
[(0, 1, {'weight': 2})]
>>> # To specify a custom weight function use the weight_function parameter
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=jaccard)
>>> print(G.edges(data=True))
[(0, 1, {'weight': 1.0})]
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my_weight)
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>>> print(G.edges(data=True))
[(0, 1, {'weight': 10})]

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow)
copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(),
collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(),
projected_graph()

4.3.5 Spectral

Spectral bipartivity measure.

spectral_bipartivity(G[, nodes, weight]) Returns the spectral bipartivity.

spectral_bipartivity

spectral_bipartivity(G, nodes=None, weight=’weight’)
Returns the spectral bipartivity.

Parameters

• G (NetworkX graph) –

• nodes (list or container optional(default is all nodes)) – Nodes
to return value of spectral bipartivity contribution.

• weight (string or None optional (default = ’weight’)) – Edge data
key to use for edge weights. If None, weights set to 1.

Returns sb – A single number if the keyword nodes is not specified, or a dictionary keyed by node
with the spectral bipartivity contribution of that node as the value.

Return type float or dict

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> bipartite.spectral_bipartivity(G)
1.0

Notes

This implementation uses Numpy (dense) matrices which are not efficient for storing large sparse graphs.

See also:

color()
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4.3.6 Clustering

clustering(G[, nodes, mode]) Compute a bipartite clustering coefficient for nodes.
average_clustering(G[, nodes, mode]) Compute the average bipartite clustering coefficient.
latapy_clustering(G[, nodes, mode]) Compute a bipartite clustering coefficient for nodes.
robins_alexander_clustering(G) Compute the bipartite clustering of G.

clustering

clustering(G, nodes=None, mode=’dot’)
Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density of connections defined as 1:

𝑐𝑢 =

∑︀
𝑣∈𝑁(𝑁(𝑣)) 𝑐𝑢𝑣

|𝑁(𝑁(𝑢))|

where 𝑁(𝑁(𝑢)) are the second order neighbors of 𝑢 in 𝐺 excluding 𝑢, and 𝑐𝑢𝑣 is the pairwise clustering
coefficient between nodes 𝑢 and 𝑣.

The mode selects the function for 𝑐𝑢𝑣 which can be:

𝑑𝑜𝑡:

𝑐𝑢𝑣 =
|𝑁(𝑢) ∩𝑁(𝑣)|
|𝑁(𝑢) ∪𝑁(𝑣)|

𝑚𝑖𝑛:

𝑐𝑢𝑣 =
|𝑁(𝑢) ∩𝑁(𝑣)|

𝑚𝑖𝑛(|𝑁(𝑢)|, |𝑁(𝑣)|)

𝑚𝑎𝑥:

𝑐𝑢𝑣 =
|𝑁(𝑢) ∩𝑁(𝑣)|

𝑚𝑎𝑥(|𝑁(𝑢)|, |𝑁(𝑣)|)

Parameters

• G (graph) – A bipartite graph

• nodes (list or iterable (optional)) – Compute bipartite clustering for these
nodes. The default is all nodes in G.

• mode (string) – The pariwise bipartite clustering method to be used in the computation.
It must be “dot”, “max”, or “min”.

Returns clustering – A dictionary keyed by node with the clustering coefficient value.

Return type dictionary

Examples

1 Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social
Networks 30(1), 31–48.
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>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G,mode='min')
>>> c[0]
1.0

See also:

robins_alexander_clustering(), square_clustering(), average_clustering()

References

average_clustering

average_clustering(G, nodes=None, mode=’dot’)
Compute the average bipartite clustering coefficient.

A clustering coefficient for the whole graph is the average,

𝐶 =
1

𝑛

∑︁
𝑣∈𝐺

𝑐𝑣,

where 𝑛 is the number of nodes in 𝐺.

Similar measures for the two bipartite sets can be defined 1

𝐶𝑋 =
1

|𝑋|
∑︁
𝑣∈𝑋

𝑐𝑣,

where 𝑋 is a bipartite set of 𝐺.

Parameters

• G (graph) – a bipartite graph

• nodes (list or iterable, optional) – A container of nodes to use in computing
the average. The nodes should be either the entire graph (the default) or one of the bipartite
sets.

• mode (string) – The pariwise bipartite clustering method. It must be “dot”, “max”, or
“min”

Returns clustering – The average bipartite clustering for the given set of nodes or the entire graph
if no nodes are specified.

Return type float

Examples

1 Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social
Networks 30(1), 31–48.
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>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0

See also:

clustering()

Notes

The container of nodes passed to this function must contain all of the nodes in one of the bipartite sets (“top” or
“bottom”) in order to compute the correct average bipartite clustering coefficients.

References

latapy_clustering

latapy_clustering(G, nodes=None, mode=’dot’)
Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density of connections defined as 1:

𝑐𝑢 =

∑︀
𝑣∈𝑁(𝑁(𝑣)) 𝑐𝑢𝑣

|𝑁(𝑁(𝑢))|

where 𝑁(𝑁(𝑢)) are the second order neighbors of 𝑢 in 𝐺 excluding 𝑢, and 𝑐𝑢𝑣 is the pairwise clustering
coefficient between nodes 𝑢 and 𝑣.

The mode selects the function for 𝑐𝑢𝑣 which can be:

𝑑𝑜𝑡:

𝑐𝑢𝑣 =
|𝑁(𝑢) ∩𝑁(𝑣)|
|𝑁(𝑢) ∪𝑁(𝑣)|

𝑚𝑖𝑛:

𝑐𝑢𝑣 =
|𝑁(𝑢) ∩𝑁(𝑣)|

𝑚𝑖𝑛(|𝑁(𝑢)|, |𝑁(𝑣)|)
𝑚𝑎𝑥:

𝑐𝑢𝑣 =
|𝑁(𝑢) ∩𝑁(𝑣)|

𝑚𝑎𝑥(|𝑁(𝑢)|, |𝑁(𝑣)|)

Parameters

• G (graph) – A bipartite graph

• nodes (list or iterable (optional)) – Compute bipartite clustering for these
nodes. The default is all nodes in G.

1 Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social
Networks 30(1), 31–48.
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• mode (string) – The pariwise bipartite clustering method to be used in the computation.
It must be “dot”, “max”, or “min”.

Returns clustering – A dictionary keyed by node with the clustering coefficient value.

Return type dictionary

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G,mode='min')
>>> c[0]
1.0

See also:

robins_alexander_clustering(), square_clustering(), average_clustering()

References

robins_alexander_clustering

robins_alexander_clustering(G)
Compute the bipartite clustering of G.

Robins and Alexander 1 defined bipartite clustering coefficient as four times the number of four cycles 𝐶4

divided by the number of three paths 𝐿3 in a bipartite graph:

𝐶𝐶4 =
4 * 𝐶4

𝐿3

Parameters G (graph) – a bipartite graph

Returns clustering – The Robins and Alexander bipartite clustering for the input graph.

Return type float

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.davis_southern_women_graph()
>>> print(round(bipartite.robins_alexander_clustering(G), 3))
0.468

See also:

latapy_clustering(), square_clustering()
1 Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Compu-

tational & Mathematical Organization Theory 10(1), 69–94.
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4.3.7 Redundancy

Node redundancy for bipartite graphs.

node_redundancy(G[, nodes]) Computes the node redundancy coefficients for the nodes in the bipartite graph G.

node_redundancy

node_redundancy(G, nodes=None)
Computes the node redundancy coefficients for the nodes in the bipartite graph G.

The redundancy coefficient of a node 𝑣 is the fraction of pairs of neighbors of 𝑣 that are both linked to other
nodes. In a one-mode projection these nodes would be linked together even if 𝑣 were not there.

More formally, for any vertex 𝑣, the redundancy coefficient of ‘v‘ is defined by

𝑟𝑐(𝑣) =
|{{𝑢,𝑤} ⊆ 𝑁(𝑣), ∃𝑣′ ̸= 𝑣, (𝑣′, 𝑢) ∈ 𝐸 and (𝑣′, 𝑤) ∈ 𝐸}|

|𝑁(𝑣)|(|𝑁(𝑣)|−1)
2

,

where 𝑁(𝑣) is the set of neighbors of 𝑣 in G.

Parameters

• G (graph) – A bipartite graph

• nodes (list or iterable (optional)) – Compute redundancy for these nodes.
The default is all nodes in G.

Returns redundancy – A dictionary keyed by node with the node redundancy value.

Return type dictionary

Examples

Compute the redundancy coefficient of each node in a graph:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> rc[0]
1.0

Compute the average redundancy for the graph:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> sum(rc.values()) / len(G)
1.0

Compute the average redundancy for a set of nodes:
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>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> nodes = [0, 2]
>>> sum(rc[n] for n in nodes) / len(nodes)
1.0

Raises NetworkXError – If any of the nodes in the graph (or in nodes, if specified) has (out-
)degree less than two (which would result in division by zero, according to the definition of the
redundancy coefficient).

References

4.3.8 Centrality

closeness_centrality(G, nodes[, normalized]) Compute the closeness centrality for nodes in a bipartite network.
degree_centrality(G, nodes) Compute the degree centrality for nodes in a bipartite network.
betweenness_centrality(G, nodes) Compute betweenness centrality for nodes in a bipartite network.

closeness_centrality

closeness_centrality(G, nodes, normalized=True)
Compute the closeness centrality for nodes in a bipartite network.

The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected
to all other nodes in the connected component containing that node.

Parameters

• G (graph) – A bipartite network

• nodes (list or container) – Container with all nodes in one bipartite node set.

• normalized (bool, optional) – If True (default) normalize by connected compo-
nent size.

Returns closeness – Dictionary keyed by node with bipartite closeness centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), degree_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains
all nodes from both node sets.

Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance
for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own
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set 1. Thus the closeness centrality for node 𝑣 in the two bipartite sets 𝑈 with 𝑛 nodes and 𝑉 with 𝑚 nodes is

𝑐𝑣 =
𝑚 + 2(𝑛− 1)

𝑑
, for𝑣 ∈ 𝑈,

𝑐𝑣 =
𝑛 + 2(𝑚− 1)

𝑑
, for𝑣 ∈ 𝑉,

where 𝑑 is the sum of the distances from 𝑣 to all other nodes.

Higher values of closeness indicate higher centrality.

As in the unipartite case, setting normalized=True causes the values to normalized further to n-1 / size(G)-1
where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely
connected, this algorithm computes the closeness centrality for each connected part separately.

References

degree_centrality

degree_centrality(G, nodes)
Compute the degree centrality for nodes in a bipartite network.

The degree centrality for a node 𝑣 is the fraction of nodes connected to it.

Parameters

• G (graph) – A bipartite network

• nodes (list or container) – Container with all nodes in one bipartite node set.

Returns centrality – Dictionary keyed by node with bipartite degree centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), closeness_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains
all nodes from both bipartite node sets.

For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree
(which is 𝑛− 1 where 𝑛 is the number of nodes in G).

In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in
the opposite node set 1. The degree centrality for a node 𝑣 in the bipartite sets 𝑈 with 𝑛 nodes and 𝑉 with 𝑚
nodes is

𝑑𝑣 =
𝑑𝑒𝑔(𝑣)

𝑚
, for𝑣 ∈ 𝑈,

𝑑𝑣 =
𝑑𝑒𝑔(𝑣)

𝑛
, for𝑣 ∈ 𝑉,

where 𝑑𝑒𝑔(𝑣) is the degree of node 𝑣.

1 Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf

1 Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
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betweenness_centrality

betweenness_centrality(G, nodes)
Compute betweenness centrality for nodes in a bipartite network.

Betweenness centrality of a node 𝑣 is the sum of the fraction of all-pairs shortest paths that pass through 𝑣.

Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by
the relative size of the two node sets 1.

Let 𝑛 be the number of nodes in the node set 𝑈 and 𝑚 be the number of nodes in the node set 𝑉 , then nodes in
𝑈 are normalized by dividing by

1

2
[𝑚2(𝑠 + 1)2 + 𝑚(𝑠 + 1)(2𝑡− 𝑠− 1) − 𝑡(2𝑠− 𝑡 + 3)],

where

𝑠 = (𝑛− 1) ÷𝑚, 𝑡 = (𝑛− 1) mod 𝑚,

and nodes in 𝑉 are normalized by dividing by

1

2
[𝑛2(𝑝 + 1)2 + 𝑛(𝑝 + 1)(2𝑟 − 𝑝− 1) − 𝑟(2𝑝− 𝑟 + 3)],

where,

𝑝 = (𝑚− 1) ÷ 𝑛, 𝑟 = (𝑚− 1) mod 𝑛.

Parameters

• G (graph) – A bipartite graph

• nodes (list or container) – Container with all nodes in one bipartite node set.

Returns betweenness – Dictionary keyed by node with bipartite betweenness centrality as the value.

Return type dictionary

See also:

degree_centrality(), closeness_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains
all nodes from both node sets.

References

4.3.9 Generators

Generators and functions for bipartite graphs.

1 Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social
Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
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complete_bipartite_graph(n1, n2[, create_using]) Return the complete bipartite graph 𝐾𝑛1,𝑛2
.

configuration_model(aseq, bseq[, ...]) Return a random bipartite graph from two given degree sequences.
havel_hakimi_graph(aseq, bseq[, create_using]) Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
reverse_havel_hakimi_graph(aseq, bseq[, ...]) Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
alternating_havel_hakimi_graph(aseq, bseq[, ...]) Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.
preferential_attachment_graph(aseq, p[, ...]) Create a bipartite graph with a preferential attachment model from a given single degree sequence.
random_graph(n, m, p[, seed, directed]) Return a bipartite random graph.
gnmk_random_graph(n, m, k[, seed, directed]) Return a random bipartite graph G_{n,m,k}.

complete_bipartite_graph

complete_bipartite_graph(n1, n2, create_using=None)
Return the complete bipartite graph 𝐾𝑛1,𝑛2 .

Composed of two partitions with 𝑛1 nodes in the first and 𝑛2 nodes in the second. Each node in the first is
connected to each node in the second.

Parameters

• n1 (integer) – Number of nodes for node set A.

• n2 (integer) – Number of nodes for node set B.

• create_using (NetworkX graph instance, optional) – Return graph of
this type.

Notes

Node labels are the integers 0 to 𝑛1 + 𝑛2 − 1.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node
belongs to.

configuration_model

configuration_model(aseq, bseq, create_using=None, seed=None)
Return a random bipartite graph from two given degree sequences.

Parameters

• aseq (list) – Degree sequence for node set A.

• bseq (list) – Degree sequence for node set B.

• create_using (NetworkX graph instance, optional) – Return graph of
this type.

• seed (integer, optional) – Seed for random number generator.

• from the set A are connected to nodes in the set B by (Nodes) –

• randomly from the possible free stubs, one in A and (choosing)
–

• in B. (one) –
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Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node
belongs to.

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

havel_hakimi_graph

havel_hakimi_graph(aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the
highest degree nodes in set B until all stubs are connected.

Parameters

• aseq (list) – Degree sequence for node set A.

• bseq (list) – Degree sequence for node set B.

• create_using (NetworkX graph instance, optional) – Return graph of
this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node
belongs to.

reverse_havel_hakimi_graph

reverse_havel_hakimi_graph(aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the
lowest degree nodes in set B until all stubs are connected.

Parameters

• aseq (list) – Degree sequence for node set A.

• bseq (list) – Degree sequence for node set B.

• create_using (NetworkX graph instance, optional) – Return graph of
this type.
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Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node
belongs to.

alternating_havel_hakimi_graph

alternating_havel_hakimi_graph(aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to
alternatively the highest and the lowest degree nodes in set B until all stubs are connected.

Parameters

• aseq (list) – Degree sequence for node set A.

• bseq (list) – Degree sequence for node set B.

• create_using (NetworkX graph instance, optional) – Return graph of
this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node
belongs to.

preferential_attachment_graph

preferential_attachment_graph(aseq, p, create_using=None, seed=None)
Create a bipartite graph with a preferential attachment model from a given single degree sequence.

Parameters

• aseq (list) – Degree sequence for node set A.

• p (float) – Probability that a new bottom node is added.

• create_using (NetworkX graph instance, optional) – Return graph of
this type.

• seed (integer, optional) – Seed for random number generator.
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References

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

random_graph

random_graph(n, m, p, seed=None, directed=False)
Return a bipartite random graph.

This is a bipartite version of the binomial (Erdős-Rényi) graph.

Parameters

• n (int) – The number of nodes in the first bipartite set.

• m (int) – The number of nodes in the second bipartite set.

• p (float) – Probability for edge creation.

• seed (int, optional) – Seed for random number generator (default=None).

• directed (bool, optional (default=False)) – If True return a directed graph

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

The bipartite random graph algorithm chooses each of the n*m (undirected) or 2*nm (directed) possible edges
with probability p.

This algorithm is O(n+m) where m is the expected number of edges.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node
belongs to.

See also:

gnp_random_graph(), configuration_model()

References

gnmk_random_graph

gnmk_random_graph(n, m, k, seed=None, directed=False)
Return a random bipartite graph G_{n,m,k}.

Produces a bipartite graph chosen randomly out of the set of all graphs with n top nodes, m bottom nodes, and
k edges.

Parameters

• n (int) – The number of nodes in the first bipartite set.

• m (int) – The number of nodes in the second bipartite set.
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• k (int) – The number of edges

• seed (int, optional) – Seed for random number generator (default=None).

• directed (bool, optional (default=False)) – If True return a directed graph

Examples

from networkx.algorithms import bipartite G = bipartite.gnmk_random_graph(10,20,50)

See also:

gnm_random_graph()

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite
package.

If k > m * n then a complete bipartite graph is returned.

This graph is a bipartite version of the 𝐺𝑛𝑚 random graph model.

4.4 Blockmodeling

Functions for creating network blockmodels from node partitions.

Created by Drew Conway <drew.conway@nyu.edu> Copyright (c) 2010. All rights reserved.

blockmodel(G, partitions[, multigraph]) Returns a reduced graph constructed using the generalized block modeling technique.

4.4.1 blockmodel

blockmodel(G, partitions, multigraph=False)
Returns a reduced graph constructed using the generalized block modeling technique.

The blockmodel technique collapses nodes into blocks based on a given partitioning of the node set. Each
partition of nodes (block) is represented as a single node in the reduced graph.

Edges between nodes in the block graph are added according to the edges in the original graph. If the parameter
multigraph is False (the default) a single edge is added with a weight equal to the sum of the edge weights
between nodes in the original graph The default is a weight of 1 if weights are not specified. If the parameter
multigraph is True then multiple edges are added each with the edge data from the original graph.

Parameters

• G (graph) – A networkx Graph or DiGraph

• partitions (list of lists, or list of sets) – The partition of the nodes.
Must be non-overlapping.

• multigraph (bool, optional) – If True return a MultiGraph with the edge data of
the original graph applied to each corresponding edge in the new graph. If False return a
Graph with the sum of the edge weights, or a count of the edges if the original graph is
unweighted.
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Returns blockmodel

Return type a Networkx graph object

Examples

>>> G=nx.path_graph(6)
>>> partition=[[0,1],[2,3],[4,5]]
>>> M=nx.blockmodel(G,partition)

References

4.5 Boundary

Routines to find the boundary of a set of nodes.

Edge boundaries are edges that have only one end in the set of nodes.

Node boundaries are nodes outside the set of nodes that have an edge to a node in the set.

edge_boundary(G, nbunch1[, nbunch2]) Return the edge boundary.
node_boundary(G, nbunch1[, nbunch2]) Return the node boundary.

4.5.1 edge_boundary

edge_boundary(G, nbunch1, nbunch2=None)
Return the edge boundary.

Edge boundaries are edges that have only one end in the given set of nodes.

Parameters

• G (graph) – A networkx graph

• nbunch1 (list, container) – Interior node set

• nbunch2 (list, container) – Exterior node set. If None then it is set to all of the
nodes in G not in nbunch1.

Returns elist – List of edges

Return type list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not
required here.
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4.5.2 node_boundary

node_boundary(G, nbunch1, nbunch2=None)
Return the node boundary.

The node boundary is all nodes in the edge boundary of a given set of nodes that are in the set.

Parameters

• G (graph) – A networkx graph

• nbunch1 (list, container) – Interior node set

• nbunch2 (list, container) – Exterior node set. If None then it is set to all of the
nodes in G not in nbunch1.

Returns nlist – List of nodes.

Return type list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not
required here.

4.6 Centrality

4.6.1 Degree

degree_centrality(G) Compute the degree centrality for nodes.
in_degree_centrality(G) Compute the in-degree centrality for nodes.
out_degree_centrality(G) Compute the out-degree centrality for nodes.

degree_centrality

degree_centrality(G)
Compute the degree centrality for nodes.

The degree centrality for a node v is the fraction of nodes it is connected to.

Parameters G (graph) – A networkx graph

Returns nodes – Dictionary of nodes with degree centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), load_centrality(), eigenvector_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.
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For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.

in_degree_centrality

in_degree_centrality(G)
Compute the in-degree centrality for nodes.

The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to.

Parameters G (graph) – A NetworkX graph

Returns nodes – Dictionary of nodes with in-degree centrality as values.

Return type dictionary

Raises NetworkXError – If the graph is undirected.

See also:

degree_centrality(), out_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.

out_degree_centrality

out_degree_centrality(G)
Compute the out-degree centrality for nodes.

The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.

Parameters G (graph) – A NetworkX graph

Returns nodes – Dictionary of nodes with out-degree centrality as values.

Return type dictionary

Raises NetworkXError – If the graph is undirected.

See also:

degree_centrality(), in_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.
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4.6.2 Closeness

closeness_centrality(G[, u, distance, ...]) Compute closeness centrality for nodes.

closeness_centrality

closeness_centrality(G, u=None, distance=None, normalized=True)
Compute closeness centrality for nodes.

Closeness centrality 1 of a node 𝑢 is the reciprocal of the sum of the shortest path distances from 𝑢 to all 𝑛− 1
other nodes. Since the sum of distances depends on the number of nodes in the graph, closeness is normalized
by the sum of minimum possible distances 𝑛− 1.

𝐶(𝑢) =
𝑛− 1∑︀𝑛−1

𝑣=1 𝑑(𝑣, 𝑢)
,

where 𝑑(𝑣, 𝑢) is the shortest-path distance between 𝑣 and 𝑢, and 𝑛 is the number of nodes in the graph.

Notice that higher values of closeness indicate higher centrality.

Parameters

• G (graph) – A NetworkX graph

• u (node, optional) – Return only the value for node u

• distance (edge attribute key, optional (default=None)) – Use the
specified edge attribute as the edge distance in shortest path calculations

• normalized (bool, optional) – If True (default) normalize by the number of nodes
in the connected part of the graph.

Returns nodes – Dictionary of nodes with closeness centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), load_centrality(), eigenvector_centrality(),
degree_centrality()

Notes

The closeness centrality is normalized to (𝑛−1)/(|𝐺|−1) where 𝑛 is the number of nodes in the connected part
of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness
centrality for each connected part separately.

If the ‘distance’ keyword is set to an edge attribute key then the shortest-path length will be computed using
Dijkstra’s algorithm with that edge attribute as the edge weight.

References

4.6.3 Betweenness

1 Linton C. Freeman: Centrality in networks: I. Conceptual clarification. Social Networks 1:215-239, 1979.
http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf
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betweenness_centrality(G[, k, normalized, ...]) Compute the shortest-path betweenness centrality for nodes.
edge_betweenness_centrality(G[, k, ...]) Compute betweenness centrality for edges.

betweenness_centrality

betweenness_centrality(G, k=None, normalized=True, weight=None, endpoints=False, seed=None)
Compute the shortest-path betweenness centrality for nodes.

Betweenness centrality of a node 𝑣 is the sum of the fraction of all-pairs shortest paths that pass through 𝑣

𝑐𝐵(𝑣) =
∑︁
𝑠,𝑡∈𝑉

𝜎(𝑠, 𝑡|𝑣)

𝜎(𝑠, 𝑡)

where 𝑉 is the set of nodes, 𝜎(𝑠, 𝑡) is the number of shortest (𝑠, 𝑡)-paths, and 𝜎(𝑠, 𝑡|𝑣) is the number of those
paths passing through some node 𝑣 other than 𝑠, 𝑡. If 𝑠 = 𝑡, 𝜎(𝑠, 𝑡) = 1, and if 𝑣 ∈ 𝑠, 𝑡, 𝜎(𝑠, 𝑡|𝑣) = 0 2.

Parameters

• G (graph) – A NetworkX graph

• k (int, optional (default=None)) – If k is not None use k node samples to esti-
mate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher
values give better approximation.

• normalized (bool, optional) – If True the betweenness values are normalized by
2/((𝑛 − 1)(𝑛 − 2)) for graphs, and 1/((𝑛 − 1)(𝑛 − 2)) for directed graphs where 𝑛 is the
number of nodes in G.

• weight (None or string, optional) – If None, all edge weights are considered
equal. Otherwise holds the name of the edge attribute used as weight.

• endpoints (bool, optional) – If True include the endpoints in the shortest path
counts.

Returns nodes – Dictionary of nodes with betweenness centrality as the value.

Return type dictionary

See also:

edge_betweenness_centrality(), load_centrality()

Notes

The algorithm is from Ulrik Brandes 1. See 4 for the original first published version and 2 for details on algo-
rithms for variations and related metrics.

For approximate betweenness calculations set k=#samples to use k nodes (“pivots”) to estimate the betweenness
values. For an estimate of the number of pivots needed see 3.

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

2 Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

1 Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-
konstanz.de/algo/publications/b-fabc-01.pdf

4 Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35–41, 1977 http://moreno.ss.uci.edu/23.pdf
3 Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318,

2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf
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References

edge_betweenness_centrality

edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None)
Compute betweenness centrality for edges.

Betweenness centrality of an edge 𝑒 is the sum of the fraction of all-pairs shortest paths that pass through 𝑒

𝑐𝐵(𝑒) =
∑︁
𝑠,𝑡∈𝑉

𝜎(𝑠, 𝑡|𝑒)
𝜎(𝑠, 𝑡)

where 𝑉 is the set of nodes,‘sigma(s, t)‘ is the number of shortest (𝑠, 𝑡)-paths, and 𝜎(𝑠, 𝑡|𝑒) is the number of
those paths passing through edge 𝑒 2.

Parameters

• G (graph) – A NetworkX graph

• k (int, optional (default=None)) – If k is not None use k node samples to esti-
mate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher
values give better approximation.

• normalized (bool, optional) – If True the betweenness values are normalized by
2/(𝑛(𝑛 − 1)) for graphs, and 1/(𝑛(𝑛 − 1)) for directed graphs where 𝑛 is the number of
nodes in G.

• weight (None or string, optional) – If None, all edge weights are considered
equal. Otherwise holds the name of the edge attribute used as weight.

Returns edges – Dictionary of edges with betweenness centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), edge_load()

Notes

The algorithm is from Ulrik Brandes 1.

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

References

4.6.4 Current Flow Closeness

current_flow_closeness_centrality(G[, ...]) Compute current-flow closeness centrality for nodes.

2 Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

1 A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-
konstanz.de/algo/publications/b-fabc-01.pdf
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current_flow_closeness_centrality

current_flow_closeness_centrality(G, weight=’weight’, dtype=<type ‘float’>, solver=’lu’)
Compute current-flow closeness centrality for nodes.

Current-flow closeness centrality is variant of closeness centrality based on effective resistance between nodes
in a network. This metric is also known as information centrality.

Parameters

• G (graph) – A NetworkX graph

• dtype (data type (float)) – Default data type for internal matrices. Set to
np.float32 for lower memory consumption.

• solver (string (default=’lu’)) – Type of linear solver to use for computing the
flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses
least memory).

Returns nodes – Dictionary of nodes with current flow closeness centrality as the value.

Return type dictionary

See also:

closeness_centrality()

Notes

The algorithm is from Brandes 1.

See also 2 for the original definition of information centrality.

References

4.6.5 Current-Flow Betweenness

current_flow_betweenness_centrality(G[, ...]) Compute current-flow betweenness centrality for nodes.
edge_current_flow_betweenness_centrality(G) Compute current-flow betweenness centrality for edges.
approximate_current_flow_betweenness_centrality(G) Compute the approximate current-flow betweenness centrality for nodes.

current_flow_betweenness_centrality

current_flow_betweenness_centrality(G, normalized=True, weight=’weight’, dtype=<type
‘float’>, solver=’full’)

Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality 2.

Parameters
1 Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science

(STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
2 Karen Stephenson and Marvin Zelen: Rethinking centrality: Methods and examples. Social Networks 11(1):1-37, 1989.

http://dx.doi.org/10.1016/0378-8733(89)90016-6
2 A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
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• G (graph) – A NetworkX graph

• normalized (bool, optional (default=True)) – If True the betweenness val-
ues are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.

• weight (string or None, optional (default=’weight’)) – Key for edge
data used as the edge weight. If None, then use 1 as each edge weight.

• dtype (data type (float)) – Default data type for internal matrices. Set to
np.float32 for lower memory consumption.

• solver (string (default=’lu’)) – Type of linear solver to use for computing the
flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses
least memory).

Returns nodes – Dictionary of nodes with betweenness centrality as the value.

Return type dictionary

See also:

approximate_current_flow_betweenness_centrality(), betweenness_centrality(),
edge_betweenness_centrality(), edge_current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in 𝑂(𝐼(𝑛 − 1) + 𝑚𝑛 log 𝑛) time 1, where 𝐼(𝑛 − 1) is the time
needed to compute the inverse Laplacian. For a full matrix this is 𝑂(𝑛3) but using sparse methods you can
achieve 𝑂(𝑛𝑚

√
𝑘) where 𝑘 is the Laplacian matrix condition number.

The space required is 𝑂(𝑛𝑤) where 𝑤 is the width of the sparse Laplacian matrix. Worse case is 𝑤 = 𝑛 for
𝑂(𝑛2).

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

edge_current_flow_betweenness_centrality

edge_current_flow_betweenness_centrality(G, normalized=True, weight=’weight’,
dtype=<type ‘float’>, solver=’full’)

Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality 2.

Parameters

• G (graph) – A NetworkX graph

• normalized (bool, optional (default=True)) – If True the betweenness val-
ues are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.

1 Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

2 A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
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• weight (string or None, optional (default=’weight’)) – Key for edge
data used as the edge weight. If None, then use 1 as each edge weight.

• dtype (data type (float)) – Default data type for internal matrices. Set to
np.float32 for lower memory consumption.

• solver (string (default=’lu’)) – Type of linear solver to use for computing the
flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses
least memory).

Returns nodes – Dictionary of edge tuples with betweenness centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), edge_betweenness_centrality(),
current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in 𝑂(𝐼(𝑛 − 1) + 𝑚𝑛 log 𝑛) time 1, where 𝐼(𝑛 − 1) is the time
needed to compute the inverse Laplacian. For a full matrix this is 𝑂(𝑛3) but using sparse methods you can
achieve 𝑂(𝑛𝑚

√
𝑘) where 𝑘 is the Laplacian matrix condition number.

The space required is 𝑂(𝑛𝑤)𝑤ℎ𝑒𝑟𝑒‘𝑤 is the width of the sparse Laplacian matrix. Worse case is 𝑤 = 𝑛 for
𝑂(𝑛2).

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

approximate_current_flow_betweenness_centrality

approximate_current_flow_betweenness_centrality(G, normalized=True, weight=’weight’,
dtype=<type ‘float’>, solver=’full’,
epsilon=0.5, kmax=10000)

Compute the approximate current-flow betweenness centrality for nodes.

Approximates the current-flow betweenness centrality within absolute error of epsilon with high probability 1.

Parameters

• G (graph) – A NetworkX graph

• normalized (bool, optional (default=True)) – If True the betweenness val-
ues are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.

• weight (string or None, optional (default=’weight’)) – Key for edge
data used as the edge weight. If None, then use 1 as each edge weight.

• dtype (data type (float)) – Default data type for internal matrices. Set to
np.float32 for lower memory consumption.

1 Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

1 Ulrik Brandes and Daniel Fleischer: Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science
(STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
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• solver (string (default=’lu’)) – Type of linear solver to use for computing the
flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses
least memory).

• epsilon (float) – Absolute error tolerance.

• kmax (int) – Maximum number of sample node pairs to use for approximation.

Returns nodes – Dictionary of nodes with betweenness centrality as the value.

Return type dictionary

See also:

current_flow_betweenness_centrality()

Notes

The running time is 𝑂((1/𝜖2)𝑚
√
𝑘 log 𝑛) and the space required is 𝑂(𝑚) for n nodes and m edges.

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

4.6.6 Eigenvector

eigenvector_centrality(G[, max_iter, tol, ...]) Compute the eigenvector centrality for the graph G.
eigenvector_centrality_numpy(G[, weight]) Compute the eigenvector centrality for the graph G.
katz_centrality(G[, alpha, beta, max_iter, ...]) Compute the Katz centrality for the nodes of the graph G.
katz_centrality_numpy(G[, alpha, beta, ...]) Compute the Katz centrality for the graph G.

eigenvector_centrality

eigenvector_centrality(G, max_iter=100, tol=1e-06, nstart=None, weight=’weight’)
Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvec-
tor centrality for node 𝑖 is

Ax = 𝜆x

where 𝐴 is the adjacency matrix of the graph G with eigenvalue 𝜆. By virtue of the Perron–Frobenius theorem,
there is a unique and positive solution if 𝜆 is the largest eigenvalue associated with the eigenvector of the
adjacency matrix 𝐴 (2).

Parameters

• G (graph) – A networkx graph

• max_iter (integer, optional) – Maximum number of iterations in power method.

• tol (float, optional) – Error tolerance used to check convergence in power method
iteration.

2 Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169.
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• nstart (dictionary, optional) – Starting value of eigenvector iteration for each
node.

• weight (None or string, optional) – If None, all edge weights are considered
equal. Otherwise holds the name of the edge attribute used as weight.

Returns nodes – Dictionary of nodes with eigenvector centrality as the value.

Return type dictionary

Examples

>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

See also:

eigenvector_centrality_numpy(), pagerank(), hits()

Notes

The measure was introduced by 1.

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been
reached.

For directed graphs this is “left” eigenvector centrality which corresponds to the in-edges in the graph. For
out-edges eigenvector centrality first reverse the graph with G.reverse().

References

eigenvector_centrality_numpy

eigenvector_centrality_numpy(G, weight=’weight’)
Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvec-
tor centrality for node 𝑖 is

Ax = 𝜆x

where 𝐴 is the adjacency matrix of the graph G with eigenvalue 𝜆. By virtue of the Perron–Frobenius theorem,
there is a unique and positive solution if 𝜆 is the largest eigenvalue associated with the eigenvector of the
adjacency matrix 𝐴 (2).

Parameters

• G (graph) – A networkx graph

• weight (None or string, optional) – The name of the edge attribute used as
weight. If None, all edge weights are considered equal.

1 Phillip Bonacich: Power and Centrality: A Family of Measures. American Journal of Sociology 92(5):1170–1182, 1986
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

2 Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, pp. 169.

4.6. Centrality 187

http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf


NetworkX Reference, Release 1.11

Returns nodes – Dictionary of nodes with eigenvector centrality as the value.

Return type dictionary

Examples

>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality_numpy(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

See also:

eigenvector_centrality(), pagerank(), hits()

Notes

The measure was introduced by 1.

This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to find the largest eigenvalue/eigenvector
pair.

For directed graphs this is “left” eigenvector centrality which corresponds to the in-edges in the graph. For
out-edges eigenvector centrality first reverse the graph with G.reverse().

References

katz_centrality

katz_centrality(G, alpha=0.1, beta=1.0, max_iter=1000, tol=1e-06, nstart=None, normalized=True,
weight=’weight’)

Compute the Katz centrality for the nodes of the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization
of the eigenvector centrality. The Katz centrality for node 𝑖 is

𝑥𝑖 = 𝛼
∑︁
𝑗

𝐴𝑖𝑗𝑥𝑗 + 𝛽,

where 𝐴 is the adjacency matrix of the graph G with eigenvalues 𝜆.

The parameter 𝛽 controls the initial centrality and

𝛼 <
1

𝜆𝑚𝑎𝑥
.

Katz centrality computes the relative influence of a node within a network by measuring the number of the
immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under
consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter 𝛽. Connections made with distant
neighbors are, however, penalized by an attenuation factor 𝛼 which should be strictly less than the inverse largest
eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information
is provided in 1 .

1 Phillip Bonacich: Power and Centrality: A Family of Measures. American Journal of Sociology 92(5):1170–1182, 1986
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

1 Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.
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Parameters

• G (graph) – A NetworkX graph

• alpha (float) – Attenuation factor

• beta (scalar or dictionary, optional (default=1.0)) – Weight at-
tributed to the immediate neighborhood. If not a scalar, the dictionary must have an value
for every node.

• max_iter (integer, optional (default=1000)) – Maximum number of iter-
ations in power method.

• tol (float, optional (default=1.0e-6)) – Error tolerance used to check con-
vergence in power method iteration.

• nstart (dictionary, optional) – Starting value of Katz iteration for each node.

• normalized (bool, optional (default=True)) – If True normalize the result-
ing values.

• weight (None or string, optional) – If None, all edge weights are considered
equal. Otherwise holds the name of the edge attribute used as weight.

Returns nodes – Dictionary of nodes with Katz centrality as the value.

Return type dictionary

Raises NetworkXError – If the parameter 𝑏𝑒𝑡𝑎 is not a scalar but lacks a value for at least one
node

Examples

>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality(G,1/phi-0.01)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37

See also:

katz_centrality_numpy(), eigenvector_centrality(), eigenvector_centrality_numpy(),
pagerank(), hits()

Notes

Katz centrality was introduced by 2.

This algorithm it uses the power method to find the eigenvector corresponding to the largest eigenvalue of the
adjacency matrix of G. The constant alpha should be strictly less than the inverse of largest eigenvalue of the
adjacency matrix for the algorithm to converge. The iteration will stop after max_iter iterations or an error
tolerance of number_of_nodes(G)*tol has been reached.

2 Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
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When 𝛼 = 1/𝜆𝑚𝑎𝑥 and 𝛽 = 0, Katz centrality is the same as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds to the in-edges in the graph. For out-edges
Katz centrality first reverse the graph with G.reverse().

References

katz_centrality_numpy

katz_centrality_numpy(G, alpha=0.1, beta=1.0, normalized=True, weight=’weight’)
Compute the Katz centrality for the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization
of the eigenvector centrality. The Katz centrality for node 𝑖 is

𝑥𝑖 = 𝛼
∑︁
𝑗

𝐴𝑖𝑗𝑥𝑗 + 𝛽,

where 𝐴 is the adjacency matrix of the graph G with eigenvalues 𝜆.

The parameter 𝛽 controls the initial centrality and

𝛼 <
1

𝜆𝑚𝑎𝑥
.

Katz centrality computes the relative influence of a node within a network by measuring the number of the
immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under
consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter 𝛽. Connections made with distant
neighbors are, however, penalized by an attenuation factor 𝛼 which should be strictly less than the inverse largest
eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information
is provided in 1 .

Parameters

• G (graph) – A NetworkX graph

• alpha (float) – Attenuation factor

• beta (scalar or dictionary, optional (default=1.0)) – Weight at-
tributed to the immediate neighborhood. If not a scalar the dictionary must have an value
for every node.

• normalized (bool) – If True normalize the resulting values.

• weight (None or string, optional) – If None, all edge weights are considered
equal. Otherwise holds the name of the edge attribute used as weight.

Returns nodes – Dictionary of nodes with Katz centrality as the value.

Return type dictionary

Raises NetworkXError – If the parameter 𝑏𝑒𝑡𝑎 is not a scalar but lacks a value for at least one
node

1 Mark E. J. Newman: Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.
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Examples

>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality_numpy(G,1/phi)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37

See also:

katz_centrality(), eigenvector_centrality_numpy(), eigenvector_centrality(),
pagerank(), hits()

Notes

Katz centrality was introduced by 2.

This algorithm uses a direct linear solver to solve the above equation. The constant alpha should be strictly less
than the inverse of largest eigenvalue of the adjacency matrix for there to be a solution. When 𝛼 = 1/𝜆𝑚𝑎𝑥 and
𝛽 = 0, Katz centrality is the same as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds to the in-edges in the graph. For out-edges
Katz centrality first reverse the graph with G.reverse().

References

4.6.7 Communicability

communicability(G) Return communicability between all pairs of nodes in G.
communicability_exp(G) Return communicability between all pairs of nodes in G.
communicability_centrality(G) Return communicability centrality for each node in G.
communicability_centrality_exp(G) Return the communicability centrality for each node of G
communicability_betweenness_centrality(G[, ...]) Return communicability betweenness for all pairs of nodes in G.
estrada_index(G) Return the Estrada index of a the graph G.

communicability

communicability(G)
Return communicability between all pairs of nodes in G.

The communicability between pairs of nodes in G is the sum of closed walks of different lengths starting at node
u and ending at node v.

Parameters G (graph) –

Returns comm – Dictionary of dictionaries keyed by nodes with communicability as the value.

2 Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
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Return type dictionary of dictionaries

Raises NetworkXError – If the graph is not undirected and simple.

See also:

communicability_centrality_exp() Communicability centrality for each node of G using matrix
exponential.

communicability_centrality() Communicability centrality for each node in G using spectral de-
composition.

communicability() Communicability between pairs of nodes in G.

Notes

This algorithm uses a spectral decomposition of the adjacency matrix. Let G=(V,E) be a simple undirected
graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph,
the communicability between nodes 𝑢 and 𝑣 based on the graph spectrum is 1

𝐶(𝑢, 𝑣) =

𝑛∑︁
𝑗=1

𝜑𝑗(𝑢)𝜑𝑗(𝑣)𝑒𝜆𝑗 ,

where 𝜑𝑗(𝑢) is the 𝑢th element of the 𝑗th orthonormal eigenvector of the adjacency matrix associated with the
eigenvalue 𝜆𝑗 .

References

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability(G)

communicability_exp

communicability_exp(G)
Return communicability between all pairs of nodes in G.

Communicability between pair of node (u,v) of node in G is the sum of closed walks of different lengths starting
at node u and ending at node v.

Parameters G (graph) –

Returns comm – Dictionary of dictionaries keyed by nodes with communicability as the value.

Return type dictionary of dictionaries

Raises NetworkXError – If the graph is not undirected and simple.

See also:

communicability_centrality_exp() Communicability centrality for each node of G using matrix
exponential.

1 Ernesto Estrada, Naomichi Hatano, “Communicability in complex networks”, Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
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communicability_centrality() Communicability centrality for each node in G using spectral de-
composition.

communicability_exp() Communicability between all pairs of nodes in G using spectral decomposition.

Notes

This algorithm uses matrix exponentiation of the adjacency matrix.

Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix
and the number of walks in the graph, the communicability between nodes u and v is 1,

𝐶(𝑢, 𝑣) = (𝑒𝐴)𝑢𝑣,

where 𝐴 is the adjacency matrix of G.

References

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability_exp(G)

communicability_centrality

communicability_centrality(G)
Return communicability centrality for each node in G.

Communicability centrality, also called subgraph centrality, of a node 𝑛 is the sum of closed walks of all lengths
starting and ending at node 𝑛.

Parameters G (graph) –

Returns nodes – Dictionary of nodes with communicability centrality as the value.

Return type dictionary

Raises NetworkXError – If the graph is not undirected and simple.

See also:

communicability() Communicability between all pairs of nodes in G.

communicability_centrality() Communicability centrality for each node of G.

Notes

This version of the algorithm computes eigenvalues and eigenvectors of the adjacency matrix.

1 Ernesto Estrada, Naomichi Hatano, “Communicability in complex networks”, Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
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Communicability centrality of a node 𝑢 in G can be found using a spectral decomposition of the adjacency
matrix 1 2,

𝑆𝐶(𝑢) =

𝑁∑︁
𝑗=1

(𝑣𝑢𝑗 )2𝑒𝜆𝑗 ,

where 𝑣𝑗 is an eigenvector of the adjacency matrix 𝐴 of G corresponding corresponding to the eigenvalue 𝜆𝑗 .

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality(G)

References

communicability_centrality_exp

communicability_centrality_exp(G)
Return the communicability centrality for each node of G

Communicability centrality, also called subgraph centrality, of a node 𝑛 is the sum of closed walks of all lengths
starting and ending at node 𝑛.

Parameters G (graph) –

Returns nodes – Dictionary of nodes with communicability centrality as the value.

Return type dictionary

Raises NetworkXError – If the graph is not undirected and simple.

See also:

communicability() Communicability between all pairs of nodes in G.

communicability_centrality() Communicability centrality for each node of G.

Notes

This version of the algorithm exponentiates the adjacency matrix. The communicability centrality of a node 𝑢
in G can be found using the matrix exponential of the adjacency matrix of G 1 2,

𝑆𝐶(𝑢) = (𝑒𝐴)𝑢𝑢.

1 Ernesto Estrada, Juan A. Rodriguez-Velazquez, “Subgraph centrality in complex networks”, Physical Review E 71, 056103 (2005).
http://arxiv.org/abs/cond-mat/0504730

2 Ernesto Estrada, Naomichi Hatano, “Communicability in complex networks”, Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
1 Ernesto Estrada, Juan A. Rodriguez-Velazquez, “Subgraph centrality in complex networks”, Physical Review E 71, 056103 (2005).

http://arxiv.org/abs/cond-mat/0504730
2 Ernesto Estrada, Naomichi Hatano, “Communicability in complex networks”, Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
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References

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality_exp(G)

communicability_betweenness_centrality

communicability_betweenness_centrality(G, normalized=True)
Return communicability betweenness for all pairs of nodes in G.

Communicability betweenness measure makes use of the number of walks connecting every pair of nodes as the
basis of a betweenness centrality measure.

Parameters G (graph) –

Returns nodes – Dictionary of nodes with communicability betweenness as the value.

Return type dictionary

Raises NetworkXError – If the graph is not undirected and simple.

See also:

communicability() Communicability between all pairs of nodes in G.

communicability_centrality() Communicability centrality for each node of G using matrix expo-
nential.

communicability_centrality_exp() Communicability centrality for each node in G using spectral
decomposition.

Notes

Let 𝐺 = (𝑉,𝐸) be a simple undirected graph with 𝑛 nodes and 𝑚 edges, and 𝐴 denote the adjacency matrix of
𝐺.

Let 𝐺(𝑟) = (𝑉,𝐸(𝑟)) be the graph resulting from removing all edges connected to node 𝑟 but not the node
itself.

The adjacency matrix for 𝐺(𝑟) is 𝐴 + 𝐸(𝑟), where 𝐸(𝑟) has nonzeros only in row and column 𝑟.

The communicability betweenness of a node 𝑟 is 1

𝜔𝑟 =
1

𝐶

∑︁
𝑝

∑︁
𝑞

𝐺𝑝𝑟𝑞

𝐺𝑝𝑞
, 𝑝 ̸= 𝑞, 𝑞 ̸= 𝑟,

where 𝐺𝑝𝑟𝑞 = (𝑒𝐴𝑝𝑞 − (𝑒𝐴+𝐸(𝑟))𝑝𝑞 is the number of walks involving node r, 𝐺𝑝𝑞 = (𝑒𝐴)𝑝𝑞 is the number of
closed walks starting at node 𝑝 and ending at node 𝑞, and 𝐶 = (𝑛 − 1)2 − (𝑛 − 1) is a normalization factor
equal to the number of terms in the sum.

The resulting 𝜔𝑟 takes values between zero and one. The lower bound cannot be attained for a connected graph,
and the upper bound is attained in the star graph.

1 Ernesto Estrada, Desmond J. Higham, Naomichi Hatano, “Communicability Betweenness in Complex Networks” Physica A 388 (2009)
764-774. http://arxiv.org/abs/0905.4102

4.6. Centrality 195

http://arxiv.org/abs/0905.4102


NetworkX Reference, Release 1.11

References

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> cbc = nx.communicability_betweenness_centrality(G)

estrada_index

estrada_index(G)
Return the Estrada index of a the graph G.

Parameters G (graph) –

Returns estrada index

Return type float

Raises NetworkXError – If the graph is not undirected and simple.

See also:

estrada_index_exp()

Notes

Let 𝐺 = (𝑉,𝐸) be a simple undirected graph with 𝑛 nodes and let 𝜆1 ≤ 𝜆2 ≤ · · ·𝜆𝑛 be a non-increasing
ordering of the eigenvalues of its adjacency matrix 𝐴. The Estrada index is

𝐸𝐸(𝐺) =

𝑛∑︁
𝑗=1

𝑒𝜆𝑗 .

References

Examples

>>> G=nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> ei=nx.estrada_index(G)

4.6.8 Load

load_centrality(G[, v, cutoff, normalized, ...]) Compute load centrality for nodes.
edge_load(G[, nodes, cutoff]) Compute edge load.

load_centrality

load_centrality(G, v=None, cutoff=None, normalized=True, weight=None)
Compute load centrality for nodes.

The load centrality of a node is the fraction of all shortest paths that pass through that node.
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Parameters

• G (graph) – A networkx graph

• normalized (bool, optional) – If True the betweenness values are normalized by
b=b/(n-1)(n-2) where n is the number of nodes in G.

• weight (None or string, optional) – If None, edge weights are ignored. Other-
wise holds the name of the edge attribute used as weight.

• cutoff (bool, optional) – If specified, only consider paths of length <= cutoff.

Returns nodes – Dictionary of nodes with centrality as the value.

Return type dictionary

See also:

betweenness_centrality()

Notes

Load centrality is slightly different than betweenness. It was originally introduced by 2. For this load algorithm
see 1.

References

edge_load

edge_load(G, nodes=None, cutoff=False)
Compute edge load.

WARNING:

This module is for demonstration and testing purposes.

4.6.9 Dispersion

dispersion(G[, u, v, normalized, alpha, b, c]) Calculate dispersion between 𝑢 and 𝑣 in 𝐺.

dispersion

dispersion(G, u=None, v=None, normalized=True, alpha=1.0, b=0.0, c=0.0)
Calculate dispersion between 𝑢 and 𝑣 in 𝐺.

A link between two actors (𝑢 and 𝑣) has a high dispersion when their mutual ties (𝑠 and 𝑡) are not well connected
with each other.

Parameters

• G (graph) – A NetworkX graph.

2 Kwang-Il Goh, Byungnam Kahng and Doochul Kim Universal behavior of Load Distribution in Scale-Free Networks. Physical Review Letters
87(27):1–4, 2001. http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

1 Mark E. J. Newman: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E 64, 016132,
2001. http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132
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• u (node, optional) – The source for the dispersion score (e.g. ego node of the net-
work).

• v (node, optional) – The target of the dispersion score if specified.

• normalized (bool) – If True (default) normalize by the embededness of the nodes (u
and v).

Returns nodes – If u (v) is specified, returns a dictionary of nodes with dispersion score for all
“target” (“source”) nodes. If neither u nor v is specified, returns a dictionary of dictionaries for
all nodes ‘u’ in the graph with a dispersion score for each node ‘v’.

Return type dictionary

Notes

This implementation follows Lars Backstrom and Jon Kleinberg 1. Typical usage would be to run dispersion
on the ego network 𝐺𝑢 if 𝑢 were specified. Running dispersion() with neither 𝑢 nor 𝑣 specified can take
some time to complete.

References

4.7 Chordal

Algorithms for chordal graphs.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle).
http://en.wikipedia.org/wiki/Chordal_graph

is_chordal(G) Checks whether G is a chordal graph.
chordal_graph_cliques(G) Returns the set of maximal cliques of a chordal graph.
chordal_graph_treewidth(G) Returns the treewidth of the chordal graph G.
find_induced_nodes(G, s, t[, treewidth_bound]) Returns the set of induced nodes in the path from s to t.

4.7.1 is_chordal

is_chordal(G)
Checks whether G is a chordal graph.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the
cycle).

Parameters G (graph) – A NetworkX graph.

Returns chordal – True if G is a chordal graph and False otherwise.

Return type bool

Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised.

1 Romantic Partnerships and the Dispersion of Social Ties: A Network Analysis of Relationship Status on Facebook. Lars Backstrom, Jon
Kleinberg. http://arxiv.org/pdf/1310.6753v1.pdf
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Examples

>>> import networkx as nx
>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
>>> G=nx.Graph(e)
>>> nx.is_chordal(G)
True

Notes

The routine tries to go through every node following maximum cardinality search. It returns False when it finds
that the separator for any node is not a clique. Based on the algorithms in 1.

References

4.7.2 chordal_graph_cliques

chordal_graph_cliques(G)
Returns the set of maximal cliques of a chordal graph.

The algorithm breaks the graph in connected components and performs a maximum cardinality search in each
component to get the cliques.

Parameters G (graph) – A NetworkX graph

Returns cliques

Return type A set containing the maximal cliques in G.

Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The
algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a
NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> setlist = nx.chordal_graph_cliques(G)

4.7.3 chordal_graph_treewidth

chordal_graph_treewidth(G)
Returns the treewidth of the chordal graph G.

Parameters G (graph) – A NetworkX graph

Returns treewidth – The size of the largest clique in the graph minus one.

1 R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566–579.
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Return type int

Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The
algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a
NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> nx.chordal_graph_treewidth(G)
3

References

4.7.4 find_induced_nodes

find_induced_nodes(G, s, t, treewidth_bound=9223372036854775807)
Returns the set of induced nodes in the path from s to t.

Parameters

• G (graph) – A chordal NetworkX graph

• s (node) – Source node to look for induced nodes

• t (node) – Destination node to look for induced nodes

• treewith_bound (float) – Maximum treewidth acceptable for the graph H. The
search for induced nodes will end as soon as the treewidth_bound is exceeded.

Returns I – The set of induced nodes in the path from s to t in G

Return type Set of nodes

Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDi-
Graph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The
algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a
NetworkXError is raised.

Examples

>>> import networkx as nx
>>> G=nx.Graph()
>>> G = nx.generators.classic.path_graph(10)
>>> I = nx.find_induced_nodes(G,1,9,2)
>>> list(I)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
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Notes

G must be a chordal graph and (s,t) an edge that is not in G.

If a treewidth_bound is provided, the search for induced nodes will end as soon as the treewidth_bound is
exceeded.

The algorithm is inspired by Algorithm 4 in 1. A formal definition of induced node can also be found on that
reference.

References

4.8 Clique

4.8.1 Cliques

Find and manipulate cliques of graphs.

Note that finding the largest clique of a graph has been shown to be an NP-complete problem; the algorithms here
could take a long time to run.

http://en.wikipedia.org/wiki/Clique_problem

enumerate_all_cliques(G) Returns all cliques in an undirected graph.
find_cliques(G) Search for all maximal cliques in a graph.
make_max_clique_graph(G[, create_using, name]) Create the maximal clique graph of a graph.
make_clique_bipartite(G[, fpos, ...]) Create a bipartite clique graph from a graph G.
graph_clique_number(G[, cliques]) Return the clique number (size of the largest clique) for G.
graph_number_of_cliques(G[, cliques]) Returns the number of maximal cliques in G.
node_clique_number(G[, nodes, cliques]) Returns the size of the largest maximal clique containing each given node.
number_of_cliques(G[, nodes, cliques]) Returns the number of maximal cliques for each node.
cliques_containing_node(G[, nodes, cliques]) Returns a list of cliques containing the given node.

4.8.2 enumerate_all_cliques

enumerate_all_cliques(G)
Returns all cliques in an undirected graph.

This method returns cliques of size (cardinality) k = 1, 2, 3, ..., maxDegree - 1.

Where maxDegree is the maximal degree of any node in the graph.

Parameters G (undirected graph) –

Returns generator of lists

Return type generator of list for each clique.

Notes

To obtain a list of all cliques, use list(enumerate_all_cliques(G)).
1 Learning Bounded Treewidth Bayesian Networks. Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699–2731, 2008.

http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf
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Based on the algorithm published by Zhang et al. (2005) 1 and adapted to output all cliques discovered.

This algorithm is not applicable on directed graphs.

This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm however, hopefully, does not run out of memory since it
only keeps candidate sublists in memory and continuously removes exhausted sublists.

References

4.8.3 find_cliques

find_cliques(G)
Search for all maximal cliques in a graph.

Maximal cliques are the largest complete subgraph containing a given node. The largest maximal clique is
sometimes called the maximum clique.

Returns generator of lists

Return type genetor of member list for each maximal clique

See also:

find_cliques_recursive(), A()

Notes

To obtain a list of cliques, use list(find_cliques(G)).

Based on the algorithm published by Bron & Kerbosch (1973) 1 as adapted by Tomita, Tanaka and Takahashi
(2006) 2 and discussed in Cazals and Karande (2008) 3. The method essentially unrolls the recursion used in the
references to avoid issues of recursion stack depth.

This algorithm is not suitable for directed graphs.

This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm can run out of memory for large graphs.

References

4.8.4 make_max_clique_graph

make_max_clique_graph(G, create_using=None, name=None)
Create the maximal clique graph of a graph.

1 Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J., Langston, M.A., Samatova, N.F., Genome-Scale Computational Approaches to
Memory-Intensive Applications in Systems Biology. Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pp. 12, 12-18
Nov. 2005. doi: 10.1109/SC.2005.29. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559964&isnumber=33129

1 Bron, C. and Kerbosch, J. 1973. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16, 9 (Sep. 1973), 575-577.
http://portal.acm.org/citation.cfm?doid=362342.362367

2 Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi, The worst-case time complexity for generating all maximal cliques and computational exper-
iments, Theoretical Computer Science, Volume 363, Issue 1, Computing and Combinatorics, 10th Annual International Conference on Computing
and Combinatorics (COCOON 2004), 25 October 2006, Pages 28-42 http://dx.doi.org/10.1016/j.tcs.2006.06.015

3 F. Cazals, C. Karande, A note on the problem of reporting maximal cliques, Theoretical Computer Science, Volume 407, Issues 1-3, 6
November 2008, Pages 564-568, http://dx.doi.org/10.1016/j.tcs.2008.05.010
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Finds the maximal cliques and treats these as nodes. The nodes are connected if they have common members in
the original graph. Theory has done a lot with clique graphs, but I haven’t seen much on maximal clique graphs.

Notes

This should be the same as make_clique_bipartite followed by project_up, but it saves all the intermediate steps.

4.8.5 make_clique_bipartite

make_clique_bipartite(G, fpos=None, create_using=None, name=None)
Create a bipartite clique graph from a graph G.

Nodes of G are retained as the “bottom nodes” of B and cliques of G become “top nodes” of B. Edges are
present if a bottom node belongs to the clique represented by the top node.

Returns a Graph with additional attribute dict B.node_type which is keyed by nodes to “Bottom” or “Top”
appropriately.

if fpos is not None, a second additional attribute dict B.pos is created to hold the position tuple of each node for
viewing the bipartite graph.

4.8.6 graph_clique_number

graph_clique_number(G, cliques=None)
Return the clique number (size of the largest clique) for G.

An optional list of cliques can be input if already computed.

4.8.7 graph_number_of_cliques

graph_number_of_cliques(G, cliques=None)
Returns the number of maximal cliques in G.

An optional list of cliques can be input if already computed.

4.8.8 node_clique_number

node_clique_number(G, nodes=None, cliques=None)
Returns the size of the largest maximal clique containing each given node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.9 number_of_cliques

number_of_cliques(G, nodes=None, cliques=None)
Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.
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4.8.10 cliques_containing_node

cliques_containing_node(G, nodes=None, cliques=None)
Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already
computed.

4.9 Clustering

Algorithms to characterize the number of triangles in a graph.

triangles(G[, nodes]) Compute the number of triangles.
transitivity(G) Compute graph transitivity, the fraction of all possible triangles present in G.
clustering(G[, nodes, weight]) Compute the clustering coefficient for nodes.
average_clustering(G[, nodes, weight, ...]) Compute the average clustering coefficient for the graph G.
square_clustering(G[, nodes]) Compute the squares clustering coefficient for nodes.

4.9.1 triangles

triangles(G, nodes=None)
Compute the number of triangles.

Finds the number of triangles that include a node as one vertex.

Parameters

• G (graph) – A networkx graph

• nodes (container of nodes, optional (default= all nodes in G))
– Compute triangles for nodes in this container.

Returns out – Number of triangles keyed by node label.

Return type dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.triangles(G,0))
6
>>> print(nx.triangles(G))
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
>>> print(list(nx.triangles(G,(0,1)).values()))
[6, 6]

Notes

When computing triangles for the entire graph each triangle is counted three times, once at each node. Self
loops are ignored.
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4.9.2 transitivity

transitivity(G)
Compute graph transitivity, the fraction of all possible triangles present in G.

Possible triangles are identified by the number of “triads” (two edges with a shared vertex).

The transitivity is

𝑇 = 3
#𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

#𝑡𝑟𝑖𝑎𝑑𝑠
.

Parameters G (graph) –

Returns out – Transitivity

Return type float

Examples

>>> G = nx.complete_graph(5)
>>> print(nx.transitivity(G))
1.0

4.9.3 clustering

clustering(G, nodes=None, weight=None)
Compute the clustering coefficient for nodes.

For unweighted graphs, the clustering of a node 𝑢 is the fraction of possible triangles through that node that
exist,

𝑐𝑢 =
2𝑇 (𝑢)

𝑑𝑒𝑔(𝑢)(𝑑𝑒𝑔(𝑢) − 1)
,

where 𝑇 (𝑢) is the number of triangles through node 𝑢 and 𝑑𝑒𝑔(𝑢) is the degree of 𝑢.

For weighted graphs, the clustering is defined as the geometric average of the subgraph edge weights 1,

𝑐𝑢 =
1

𝑑𝑒𝑔(𝑢)(𝑑𝑒𝑔(𝑢) − 1))

∑︁
𝑢𝑣

(�̂�𝑢𝑣�̂�𝑢𝑤�̂�𝑣𝑤)1/3.

The edge weights �̂�𝑢𝑣 are normalized by the maximum weight in the network �̂�𝑢𝑣 = 𝑤𝑢𝑣/max(𝑤).

The value of 𝑐𝑢 is assigned to 0 if 𝑑𝑒𝑔(𝑢) < 2.

Parameters

• G (graph) –

• nodes (container of nodes, optional (default=all nodes in G)) –
Compute clustering for nodes in this container.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns out – Clustering coefficient at specified nodes

Return type float, or dictionary
1 Generalizations of the clustering coefficient to weighted complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész,

Physical Review E, 75 027105 (2007). http://jponnela.com/web_documents/a9.pdf

4.9. Clustering 205

http://docs.python.org/library/functions.html#float
http://jponnela.com/web_documents/a9.pdf


NetworkX Reference, Release 1.11

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.clustering(G,0))
1.0
>>> print(nx.clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

Self loops are ignored.

References

4.9.4 average_clustering

average_clustering(G, nodes=None, weight=None, count_zeros=True)
Compute the average clustering coefficient for the graph G.

The clustering coefficient for the graph is the average,

𝐶 =
1

𝑛

∑︁
𝑣∈𝐺

𝑐𝑣,

where 𝑛 is the number of nodes in 𝐺.

Parameters

• G (graph) –

• nodes (container of nodes, optional (default=all nodes in G)) –
Compute average clustering for nodes in this container.

• weight (string or None, optional (default=None)) – The edge attribute
that holds the numerical value used as a weight. If None, then each edge has weight 1.

• count_zeros (bool) – If False include only the nodes with nonzero clustering in the
average.

Returns avg – Average clustering

Return type float

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.average_clustering(G))
1.0

Notes

This is a space saving routine; it might be faster to use the clustering function to get a list and then take the
average.

Self loops are ignored.
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References

4.9.5 square_clustering

square_clustering(G, nodes=None)
Compute the squares clustering coefficient for nodes.

For each node return the fraction of possible squares that exist at the node 1

𝐶4(𝑣) =

∑︀𝑘𝑣

𝑢=1

∑︀𝑘𝑣

𝑤=𝑢+1 𝑞𝑣(𝑢,𝑤)∑︀𝑘𝑣

𝑢=1

∑︀𝑘𝑣

𝑤=𝑢+1[𝑎𝑣(𝑢,𝑤) + 𝑞𝑣(𝑢,𝑤)]
,

where 𝑞𝑣(𝑢,𝑤) are the number of common neighbors of 𝑢 and 𝑤 other than 𝑣 (ie squares), and 𝑎𝑣(𝑢,𝑤) =
(𝑘𝑢 − (1 + 𝑞𝑣(𝑢,𝑤) + 𝜃𝑢𝑣))(𝑘𝑤 − (1 + 𝑞𝑣(𝑢,𝑤) + 𝜃𝑢𝑤)), where 𝜃𝑢𝑤 = 1 if 𝑢 and 𝑤 are connected and 0
otherwise.

Parameters

• G (graph) –

• nodes (container of nodes, optional (default=all nodes in G)) –
Compute clustering for nodes in this container.

Returns c4 – A dictionary keyed by node with the square clustering coefficient value.

Return type dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.square_clustering(G,0))
1.0
>>> print(nx.square_clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

While 𝐶3(𝑣) (triangle clustering) gives the probability that two neighbors of node v are connected with each
other, 𝐶4(𝑣) is the probability that two neighbors of node v share a common neighbor different from v. This
algorithm can be applied to both bipartite and unipartite networks.

References

4.10 Coloring

greedy_color(G[, strategy, interchange]) Color a graph using various strategies of greedy graph coloring.

1 Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005 Cycles and clustering in bipartite networks. Physical Review E (72) 056127.
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4.10.1 greedy_color

greedy_color(G, strategy=<function strategy_largest_first>, interchange=False)
Color a graph using various strategies of greedy graph coloring. The strategies are described in 1.

Attempts to color a graph using as few colors as possible, where no neighbours of a node can have same color
as the node itself.

Parameters

• G (NetworkX graph) –

• strategy (function(G, colors)) – A function that provides the coloring strategy,
by returning nodes in the ordering they should be colored. G is the graph, and colors is a
dict of the currently assigned colors, keyed by nodes.

You can pass your own ordering function, or use one of the built in:

– strategy_largest_first

– strategy_random_sequential

– strategy_smallest_last

– strategy_independent_set

– strategy_connected_sequential_bfs

– strategy_connected_sequential_dfs

– strategy_connected_sequential (alias of strategy_connected_sequential_bfs)

– strategy_saturation_largest_first (also known as DSATUR)

• interchange (bool) – Will use the color interchange algorithm described by 2 if set to
true.

Note that saturation largest first and independent set do not work with interchange. Further-
more, if you use interchange with your own strategy function, you cannot rely on the values
in the colors argument.

Returns

• A dictionary with keys representing nodes and values representing

• corresponding coloring.

Examples

>>> G = nx.cycle_graph(4)
>>> d = nx.coloring.greedy_color(G, strategy=nx.coloring.strategy_largest_first)
>>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
True

1 Adrian Kosowski, and Krzysztof Manuszewski, Classical Coloring of Graphs, Graph Colorings, 2-19, 2004. ISBN 0-8218-3458-4.
2 Maciej M. Syslo, Marsingh Deo, Janusz S. Kowalik, Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983. ISBN 0-486-

45353-7.
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References

4.11 Communities

4.11.1 K-Clique

k_clique_communities(G, k[, cliques]) Find k-clique communities in graph using the percolation method.

k_clique_communities

k_clique_communities(G, k, cliques=None)
Find k-clique communities in graph using the percolation method.

A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1
nodes) k-cliques.

Parameters

• G (NetworkX graph) –

• k (int) – Size of smallest clique

• cliques (list or generator) – Precomputed cliques (use net-
workx.find_cliques(G))

Returns

Return type Yields sets of nodes, one for each k-clique community.

Examples

>>> G = nx.complete_graph(5)
>>> K5 = nx.convert_node_labels_to_integers(G,first_label=2)
>>> G.add_edges_from(K5.edges())
>>> c = list(nx.k_clique_communities(G, 4))
>>> list(c[0])
[0, 1, 2, 3, 4, 5, 6]
>>> list(nx.k_clique_communities(G, 6))
[]

References

4.12 Components

4.12.1 Connectivity

Connected components.

is_connected(G) Return True if the graph is connected, false otherwise.
number_connected_components(G) Return the number of connected components.

Continued on next page
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Table 4.40 – continued from previous page
connected_components(G) Generate connected components.
connected_component_subgraphs(G[, copy]) Generate connected components as subgraphs.
node_connected_component(G, n) Return the nodes in the component of graph containing node n.

is_connected

is_connected(G)
Return True if the graph is connected, false otherwise.

Parameters G (NetworkX Graph) – An undirected graph.

Returns connected – True if the graph is connected, false otherwise.

Return type bool

Examples

>>> G = nx.path_graph(4)
>>> print(nx.is_connected(G))
True

See also:

connected_components()

Notes

For undirected graphs only.

number_connected_components

number_connected_components(G)
Return the number of connected components.

Parameters G (NetworkX graph) – An undirected graph.

Returns n – Number of connected components

Return type integer

See also:

connected_components()

Notes

For undirected graphs only.
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connected_components

connected_components(G)
Generate connected components.

Parameters G (NetworkX graph) – An undirected graph

Returns comp – A generator of sets of nodes, one for each component of G.

Return type generator of sets

Examples

Generate a sorted list of connected components, largest first.

>>> G = nx.path_graph(4)
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
[4, 3]

If you only want the largest connected component, it’s more efficient to use max instead of sort.

>>> largest_cc = max(nx.connected_components(G), key=len)

See also:

strongly_connected_components()

Notes

For undirected graphs only.

connected_component_subgraphs

connected_component_subgraphs(G, copy=True)
Generate connected components as subgraphs.

Parameters

• G (NetworkX graph) – An undirected graph.

• copy (bool (default=True)) – If True make a copy of the graph attributes

Returns comp – A generator of graphs, one for each connected component of G.

Return type generator

Examples

>>> G = nx.path_graph(4)
>>> G.add_edge(5,6)
>>> graphs = list(nx.connected_component_subgraphs(G))

If you only want the largest connected component, it’s more efficient to use max than sort.

>>> Gc = max(nx.connected_component_subgraphs(G), key=len)
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See also:

connected_components()

Notes

For undirected graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

node_connected_component

node_connected_component(G, n)
Return the nodes in the component of graph containing node n.

Parameters

• G (NetworkX Graph) – An undirected graph.

• n (node label) – A node in G

Returns comp – A set of nodes in the component of G containing node n.

Return type set

See also:

connected_components()

Notes

For undirected graphs only.

4.12.2 Strong connectivity

Strongly connected components.

is_strongly_connected(G) Test directed graph for strong connectivity.
number_strongly_connected_components(G) Return number of strongly connected components in graph.
strongly_connected_components(G) Generate nodes in strongly connected components of graph.
strongly_connected_component_subgraphs(G[, copy]) Generate strongly connected components as subgraphs.
strongly_connected_components_recursive(G) Generate nodes in strongly connected components of graph.
kosaraju_strongly_connected_components(G[, ...]) Generate nodes in strongly connected components of graph.
condensation(G[, scc]) Returns the condensation of G.

is_strongly_connected

is_strongly_connected(G)
Test directed graph for strong connectivity.

Parameters G (NetworkX Graph) – A directed graph.

Returns connected – True if the graph is strongly connected, False otherwise.

Return type bool

See also:
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strongly_connected_components()

Notes

For directed graphs only.

number_strongly_connected_components

number_strongly_connected_components(G)
Return number of strongly connected components in graph.

Parameters G (NetworkX graph) – A directed graph.

Returns n – Number of strongly connected components

Return type integer

See also:

connected_components()

Notes

For directed graphs only.

strongly_connected_components

strongly_connected_components(G)
Generate nodes in strongly connected components of graph.

Parameters G (NetworkX Graph) – An directed graph.

Returns comp – A generator of sets of nodes, one for each strongly connected component of G.

Return type generator of sets

Raises NetworkXNotImplemented: – If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> largest = max(nx.strongly_connected_components(G), key=len)

See also:

connected_components(), weakly_connected_components()
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Notes

Uses Tarjan’s algorithm with Nuutila’s modifications. Nonrecursive version of algorithm.

References

strongly_connected_component_subgraphs

strongly_connected_component_subgraphs(G, copy=True)
Generate strongly connected components as subgraphs.

Parameters

• G (NetworkX Graph) – A directed graph.

• copy (boolean, optional) – if copy is True, Graph, node, and edge attributes are
copied to the subgraphs.

Returns comp – A generator of graphs, one for each strongly connected component of G.

Return type generator of graphs

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(Gc) for Gc in sorted(nx.strongly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len)

See also:

connected_component_subgraphs(), weakly_connected_component_subgraphs()

strongly_connected_components_recursive

strongly_connected_components_recursive(G)
Generate nodes in strongly connected components of graph.

Recursive version of algorithm.

Parameters G (NetworkX Graph) – An directed graph.

Returns comp – A generator of sets of nodes, one for each strongly connected component of G.

Return type generator of sets

Raises NetworkXNotImplemented: – If G is undirected
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Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components_recursive(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> largest = max(nx.strongly_connected_components_recursive(G), key=len)

See also:

connected_components()

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications.

References

kosaraju_strongly_connected_components

kosaraju_strongly_connected_components(G, source=None)
Generate nodes in strongly connected components of graph.

Parameters G (NetworkX Graph) – An directed graph.

Returns comp – A genrator of sets of nodes, one for each strongly connected component of G.

Return type generator of sets

Raises NetworkXNotImplemented: – If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.kosaraju_strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)

See also:

connected_components(), weakly_connected_components()
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Notes

Uses Kosaraju’s algorithm.

condensation

condensation(G, scc=None)
Returns the condensation of G.

The condensation of G is the graph with each of the strongly connected components contracted into a single
node.

Parameters

• G (NetworkX DiGraph) – A directed graph.

• scc (list or generator (optional, default=None)) – Strongly connected
components. If provided, the elements in 𝑠𝑐𝑐 must partition the nodes in 𝐺. If not provided,
it will be calculated as scc=nx.strongly_connected_components(G).

Returns C – The condensation graph C of G. The node labels are integers corresponding to the index
of the component in the list of strongly connected components of G. C has a graph attribute
named ‘mapping’ with a dictionary mapping the original nodes to the nodes in C to which they
belong. Each node in C also has a node attribute ‘members’ with the set of original nodes in G
that form the SCC that the node in C represents.

Return type NetworkX DiGraph

Raises NetworkXNotImplemented: – If G is not directed

Notes

After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic
graph.

4.12.3 Weak connectivity

Weakly connected components.

is_weakly_connected(G) Test directed graph for weak connectivity.
number_weakly_connected_components(G) Return the number of weakly connected components in G.
weakly_connected_components(G) Generate weakly connected components of G.
weakly_connected_component_subgraphs(G[, copy]) Generate weakly connected components as subgraphs.

is_weakly_connected

is_weakly_connected(G)
Test directed graph for weak connectivity.

A directed graph is weakly connected if, and only if, the graph is connected when the direction of the edge
between nodes is ignored.

Parameters G (NetworkX Graph) – A directed graph.

Returns connected – True if the graph is weakly connected, False otherwise.
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Return type bool

See also:

is_strongly_connected(), is_semiconnected(), is_connected()

Notes

For directed graphs only.

number_weakly_connected_components

number_weakly_connected_components(G)
Return the number of weakly connected components in G.

Parameters G (NetworkX graph) – A directed graph.

Returns n – Number of weakly connected components

Return type integer

See also:

connected_components()

Notes

For directed graphs only.

weakly_connected_components

weakly_connected_components(G)
Generate weakly connected components of G.

Parameters G (NetworkX graph) – A directed graph

Returns comp – A generator of sets of nodes, one for each weakly connected component of G.

Return type generator of sets

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> largest_cc = max(nx.weakly_connected_components(G), key=len)

See also:

strongly_connected_components()
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Notes

For directed graphs only.

weakly_connected_component_subgraphs

weakly_connected_component_subgraphs(G, copy=True)
Generate weakly connected components as subgraphs.

Parameters

• G (NetworkX graph) – A directed graph.

• copy (bool (default=True)) – If True make a copy of the graph attributes

Returns comp – A generator of graphs, one for each weakly connected component of G.

Return type generator

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

>>> Gc = max(nx.weakly_connected_component_subgraphs(G), key=len)

See also:

strongly_connected_components(), connected_components()

Notes

For directed graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

4.12.4 Attracting components

Attracting components.

is_attracting_component(G) Returns True if 𝐺 consists of a single attracting component.
number_attracting_components(G) Returns the number of attracting components in 𝐺.
attracting_components(G) Generates a list of attracting components in 𝐺.
attracting_component_subgraphs(G[, copy]) Generates a list of attracting component subgraphs from 𝐺.

is_attracting_component

is_attracting_component(G)
Returns True if 𝐺 consists of a single attracting component.
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Parameters G (DiGraph, MultiDiGraph) – The graph to be analyzed.

Returns attracting – True if 𝐺 has a single attracting component. Otherwise, False.

Return type bool

See also:

attracting_components(), number_attracting_components(),
attracting_component_subgraphs()

number_attracting_components

number_attracting_components(G)
Returns the number of attracting components in 𝐺.

Parameters G (DiGraph, MultiDiGraph) – The graph to be analyzed.

Returns n – The number of attracting components in G.

Return type int

See also:

attracting_components(), is_attracting_component(), attracting_component_subgraphs()

attracting_components

attracting_components(G)
Generates a list of attracting components in 𝐺.

An attracting component in a directed graph 𝐺 is a strongly connected component with the property that a
random walker on the graph will never leave the component, once it enters the component.

The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the
attractor containing the node, then the node will be visited infinitely often.

Parameters G (DiGraph, MultiDiGraph) – The graph to be analyzed.

Returns attractors – A generator of sets of nodes, one for each attracting component of G.

Return type generator of sets

See also:

number_attracting_components(), is_attracting_component(),
attracting_component_subgraphs()

attracting_component_subgraphs

attracting_component_subgraphs(G, copy=True)
Generates a list of attracting component subgraphs from 𝐺.

Parameters G (DiGraph, MultiDiGraph) – The graph to be analyzed.

Returns

• subgraphs (list) – A list of node-induced subgraphs of the attracting components of 𝐺.

• copy (bool) – If copy is True, graph, node, and edge attributes are copied to the subgraphs.
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See also:

attracting_components(), number_attracting_components(),
is_attracting_component()

4.12.5 Biconnected components

Biconnected components and articulation points.

is_biconnected(G) Return True if the graph is biconnected, False otherwise.
biconnected_components(G) Return a generator of sets of nodes, one set for each biconnected
biconnected_component_edges(G) Return a generator of lists of edges, one list for each biconnected component of the input graph.
biconnected_component_subgraphs(G[, copy]) Return a generator of graphs, one graph for each biconnected component of the input graph.
articulation_points(G) Return a generator of articulation points, or cut vertices, of a graph.

is_biconnected

is_biconnected(G)
Return True if the graph is biconnected, False otherwise.

A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges
incident on that node). If removing a node increases the number of disconnected components in the graph, that
node is called an articulation point, or cut vertex. A biconnected graph has no articulation points.

Parameters G (NetworkX Graph) – An undirected graph.

Returns biconnected – True if the graph is biconnected, False otherwise.

Return type bool

Raises NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.path_graph(4)
>>> print(nx.is_biconnected(G))
False
>>> G.add_edge(0, 3)
>>> print(nx.is_biconnected(G))
True

See also:

biconnected_components(), articulation_points(), biconnected_component_edges(),
biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node 𝑛
is an articulation point if, and only if, there exists a subtree rooted at 𝑛 such that there is no back edge from
any successor of 𝑛 that links to a predecessor of 𝑛 in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.
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References

biconnected_components

biconnected_components(G)
Return a generator of sets of nodes, one set for each biconnected component of the graph

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that
node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component.
Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number
of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G (NetworkX Graph) – An undirected graph.

Returns nodes – Generator of sets of nodes, one set for each biconnected component.

Return type generator

Raises NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
1

You can generate a sorted list of biconnected components, largest first, using sort.

>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
[5, 2]

If you only want the largest connected component, it’s more efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_components(G), key=len)

See also:

is_biconnected(), articulation_points(), biconnected_component_edges(),
biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node 𝑛
is an articulation point if, and only if, there exists a subtree rooted at 𝑛 such that there is no back edge from
any successor of 𝑛 that links to a predecessor of 𝑛 in the DFS tree. By keeping track of all the edges traversed
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by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.

References

biconnected_component_edges

biconnected_component_edges(G)
Return a generator of lists of edges, one list for each biconnected component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that
node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected compo-
nent. Those nodes are articulation points, or cut vertices. However, each edge belongs to one, and only one,
biconnected component.

Notice that by convention a dyad is considered a biconnected component.

Parameters G (NetworkX Graph) – An undirected graph.

Returns edges – Generator of lists of edges, one list for each bicomponent.

Return type generator of lists

Raises NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
5
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
1

See also:

is_biconnected(), biconnected_components(), articulation_points(),
biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node 𝑛
is an articulation point if, and only if, there exists a subtree rooted at 𝑛 such that there is no back edge from
any successor of 𝑛 that links to a predecessor of 𝑛 in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.
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biconnected_component_subgraphs

biconnected_component_subgraphs(G, copy=True)
Return a generator of graphs, one graph for each biconnected component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that
node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component.
Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number
of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G (NetworkX Graph) – An undirected graph.

Returns graphs – Generator of graphs, one graph for each biconnected component.

Return type generator

Raises NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
1

You can generate a sorted list of biconnected components, largest first, using sort.

>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_component_subgraphs(G),
... key=len, reverse=True)]
[5, 2]

If you only want the largest connected component, it’s more efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_component_subgraphs(G), key=len)

See also:

is_biconnected(), articulation_points(), biconnected_component_edges(),
biconnected_components()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node 𝑛
is an articulation point if, and only if, there exists a subtree rooted at 𝑛 such that there is no back edge from
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any successor of 𝑛 that links to a predecessor of 𝑛 in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.

Graph, node, and edge attributes are copied to the subgraphs.

References

articulation_points

articulation_points(G)
Return a generator of articulation points, or cut vertices, of a graph.

An articulation point or cut vertex is any node whose removal (along with all its incident edges) increases the
number of connected components of a graph. An undirected connected graph without articulation points is
biconnected. Articulation points belong to more than one biconnected component of a graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G (NetworkX Graph) – An undirected graph.

Returns articulation points – generator of nodes

Return type generator

Raises NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> len(list(nx.articulation_points(G)))
4
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> len(list(nx.articulation_points(G)))
0

See also:

is_biconnected(), biconnected_components(), biconnected_component_edges(),
biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node 𝑛
is an articulation point if, and only if, there exists a subtree rooted at 𝑛 such that there is no back edge from
any successor of 𝑛 that links to a predecessor of 𝑛 in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.
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4.12.6 Semiconnectedness

Semiconnectedness.

is_semiconnected(G) Return True if the graph is semiconnected, False otherwise.

is_semiconnected

is_semiconnected(G)
Return True if the graph is semiconnected, False otherwise.

A graph is semiconnected if, and only if, for any pair of nodes, either one is reachable from the other, or they
are mutually reachable.

Parameters G (NetworkX graph) – A directed graph.

Returns semiconnected – True if the graph is semiconnected, False otherwise.

Return type bool

Raises

• NetworkXNotImplemented : – If the input graph is not directed.

• NetworkXPointlessConcept : – If the graph is empty.

Examples

>>> G=nx.path_graph(4,create_using=nx.DiGraph())
>>> print(nx.is_semiconnected(G))
True
>>> G=nx.DiGraph([(1, 2), (3, 2)])
>>> print(nx.is_semiconnected(G))
False

See also:

is_strongly_connected(), is_weakly_connected()

4.13 Connectivity

Connectivity and cut algorithms

4.13.1 K-node-components

Moody and White algorithm for k-components

k_components(G[, flow_func]) Returns the k-component structure of a graph G.
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k_components

k_components(G, flow_func=None)
Returns the k-component structure of a graph G.

A 𝑘-component is a maximal subgraph of a graph G that has, at least, node connectivity 𝑘: we need to remove at
least 𝑘 nodes to break it into more components. 𝑘-components have an inherent hierarchical structure because
they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which
can contain one or more 3-components, and so forth.

Parameters

• G (NetworkX graph) –

• flow_func (function) – Function to perform the underlying flow computations. De-
fault value edmonds_karp(). This function performs better in sparse graphs with right
tailed degree distributions. shortest_augmenting_path() will perform better in
denser graphs.

Returns k_components – Dictionary with all connectivity levels 𝑘 in the input Graph as keys and a
list of sets of nodes that form a k-component of level 𝑘 as values.

Return type dict

Raises NetworkXNotImplemented: – If the input graph is directed.

Examples

>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> G = nx.petersen_graph()
>>> k_components = nx.k_components(G)

Notes

Moody and White 1 (appendix A) provide an algorithm for identifying k-components in a graph, which is
based on Kanevsky’s algorithm 2 for finding all minimum-size node cut-sets of a graph (implemented in
all_node_cuts() function):

1.Compute node connectivity, k, of the input graph G.

2.Identify all k-cutsets at the current level of connectivity using Kanevsky’s algorithm.

3.Generate new graph components based on the removal of these cutsets. Nodes in a cutset belong to both
sides of the induced cut.

4.If the graph is neither complete nor trivial, return to 1; else end.

This implementation also uses some heuristics (see 3 for details) to speed up the computation.

See also:

node_connectivity(), all_node_cuts()
1 Moody, J. and D. White (2003). Social cohesion and embeddedness: A hierarchical conception of social groups. American Sociological

Review 68(1), 103–28. http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
2 Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541.

http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
3 Torrents, J. and F. Ferraro (2015). Structural Cohesion: Visualization and Heuristics for Fast Computation. http://arxiv.org/pdf/1503.04476v1
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4.13.2 K-node-cutsets

Kanevsky all minimum node k cutsets algorithm.

all_node_cuts(G[, k, flow_func]) Returns all minimum k cutsets of an undirected graph G.

all_node_cuts

all_node_cuts(G, k=None, flow_func=None)
Returns all minimum k cutsets of an undirected graph G.

This implementation is based on Kanevsky’s algorithm 1 for finding all minimum-size node cut-sets of an
undirected graph G; ie the set (or sets) of nodes of cardinality equal to the node connectivity of G. Thus if
removed, would break G into two or more connected components.

Parameters

• G (NetworkX graph) – Undirected graph

• k (Integer) – Node connectivity of the input graph. If k is None, then it is computed.
Default value: None.

• flow_func (function) – Function to perform the underlying flow computations. De-
fault value edmonds_karp. This function performs better in sparse graphs with right tailed
degree distributions. shortest_augmenting_path will perform better in denser graphs.

Returns cuts – Each node cutset has cardinality equal to the node connectivity of the input graph.

Return type a generator of node cutsets

Examples

>>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
>>> G = nx.grid_2d_graph(5, 5)
>>> cutsets = list(nx.all_node_cuts(G))
>>> len(cutsets)
4
>>> all(2 == len(cutset) for cutset in cutsets)
True
>>> nx.node_connectivity(G)
2

Notes

This implementation is based on the sequential algorithm for finding all minimum-size separating vertex sets in
a graph 1. The main idea is to compute minimum cuts using local maximum flow computations among a set of
nodes of highest degree and all other non-adjacent nodes in the Graph. Once we find a minimum cut, we add an
edge between the high degree node and the target node of the local maximum flow computation to make sure
that we will not find that minimum cut again.

See also:
1 Kanevsky, A. (1993). Finding all minimum-size separating vertex sets in a graph. Networks 23(6), 533–541.

http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
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node_connectivity(), edmonds_karp(), shortest_augmenting_path()

References

4.13.3 Flow-based Connectivity

Flow based connectivity algorithms

average_node_connectivity(G[, flow_func]) Returns the average connectivity of a graph G.
all_pairs_node_connectivity(G[, nbunch, ...]) Compute node connectivity between all pairs of nodes of G.
edge_connectivity(G[, s, t, flow_func]) Returns the edge connectivity of the graph or digraph G.
local_edge_connectivity(G, u, v[, ...]) Returns local edge connectivity for nodes s and t in G.
local_node_connectivity(G, s, t[, ...]) Computes local node connectivity for nodes s and t.
node_connectivity(G[, s, t, flow_func]) Returns node connectivity for a graph or digraph G.

average_node_connectivity

average_node_connectivity(G, flow_func=None)
Returns the average connectivity of a graph G.

The average connectivity �̄� of a graph G is the average of local node connectivity over all pairs of nodes of G 1 .

�̄�(𝐺) =

∑︀
𝑢,𝑣 𝜅𝐺(𝑢, 𝑣)(︀

𝑛
2

)︀
Parameters

• G (NetworkX graph) – Undirected graph

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See local_node_connectivity() for details. The
choice of the default function may change from version to version and should not be relied
on. Default value: None.

Returns K – Average node connectivity

Return type float

See also:

local_node_connectivity(), node_connectivity(), edge_connectivity(),
maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

all_pairs_node_connectivity

all_pairs_node_connectivity(G, nbunch=None, flow_func=None)
Compute node connectivity between all pairs of nodes of G.

1 Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31-45.
http://www.sciencedirect.com/science/article/pii/S0012365X01001807
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Parameters

• G (NetworkX graph) – Undirected graph

• nbunch (container) – Container of nodes. If provided node connectivity will be com-
puted only over pairs of nodes in nbunch.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns all_pairs – A dictionary with node connectivity between all pairs of nodes in G, or in
nbunch if provided.

Return type dict

See also:

local_node_connectivity(), edge_connectivity(), local_edge_connectivity(),
maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

edge_connectivity

edge_connectivity(G, s=None, t=None, flow_func=None)
Returns the edge connectivity of the graph or digraph G.

The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render
it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum
number of edges that must be removed to break all paths from source to target in G.

Parameters

• G (NetworkX graph) – Undirected or directed graph

• s (node) – Source node. Optional. Default value: None.

• t (node) – Target node. Optional. Default value: None.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns K – Edge connectivity for G, or local edge connectivity if source and target were provided

Return type integer

Examples

>>> # Platonic icosahedral graph is 5-edge-connected
>>> G = nx.icosahedral_graph()
>>> nx.edge_connectivity(G)
5
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You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path() will usually perform better than the default
edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
5

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge
connectivity.

>>> nx.edge_connectivity(G, 3, 7)
5

If you need to perform several local computations among different pairs of nodes on the same graph,
it is recommended that you reuse the data structures used in the maximum flow computations. See
local_edge_connectivity() for details.

Notes

This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by
finding a ‘small’ dominating set of nodes of G (see algorithm 7 in 1 ) and computing local maximum flow (see
local_edge_connectivity()) between an arbitrary node in the dominating set and the rest of nodes in
it. This is an implementation of algorithm 6 in 1 . For directed graphs, the algorithm does n calls to the maximum
flow function. This is an implementation of algorithm 8 in 1 .

See also:

local_edge_connectivity(), local_node_connectivity(), node_connectivity(),
maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

local_edge_connectivity

local_edge_connectivity(G, u, v, flow_func=None, auxiliary=None, residual=None, cutoff=None)
Returns local edge connectivity for nodes s and t in G.

Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to discon-
nect them.

This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary
digraph build from the original network (see below for details). This is equal to the local edge connectivity
because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson
theorem) 1 .

Parameters

• G (NetworkX graph) – Undirected or directed graph

• s (node) – Source node

• t (node) – Target node

1 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
1 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
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• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

• auxiliary (NetworkX DiGraph) – Auxiliary digraph for computing flow based edge
connectivity. If provided it will be reused instead of recreated. Default value: None.

• residual (NetworkX DiGraph) – Residual network to compute maximum flow. If
provided it will be reused instead of recreated. Default value: None.

• cutoff (integer, float) – If specified, the maximum flow algorithm will terminate
when the flow value reaches or exceeds the cutoff. This is only for the algorithms that sup-
port the cutoff parameter: edmonds_karp() and shortest_augmenting_path().
Other algorithms will ignore this parameter. Default value: None.

Returns K – local edge connectivity for nodes s and t.

Return type integer

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:

>>> from networkx.algorithms.connectivity import local_edge_connectivity

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_edge_connectivity(G, 0, 6)
5

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that
you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity,
and the residual network for the underlying maximum flow computation.

Example of how to compute local edge connectivity among all pairs of nodes of the platonic icosahedral graph
reusing the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
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>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing edge connectivity. For instance, in dense
networks the algorithm shortest_augmenting_path() will usually perform better than the default
edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of edge connectivity. We compute the maximum flow using, by default, the
edmonds_karp() algorithm on an auxiliary digraph build from the original input graph:

If the input graph is undirected, we replace each edge (𝑢,‘v‘) with two reciprocal arcs (𝑢, 𝑣) and (𝑣, 𝑢) and
then we set the attribute ‘capacity’ for each arc to 1. If the input graph is directed we simply add the ‘capacity’
attribute. This is an implementation of algorithm 1 in 1.

The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a
maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

See also:

edge_connectivity(), local_node_connectivity(), node_connectivity(),
maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

local_node_connectivity

local_node_connectivity(G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None)
Computes local node connectivity for nodes s and t.

Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be
removed (along with their incident edges) to disconnect them.

This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary
digraph build from the original input graph (see below for details).

Parameters

• G (NetworkX graph) – Undirected graph

• s (node) – Source node

• t (node) – Target node

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.
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• auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node
connectivity. It has to have a graph attribute called mapping with a dictionary mapping node
names in G and in the auxiliary digraph. If provided it will be reused instead of recreated.
Default value: None.

• residual (NetworkX DiGraph) – Residual network to compute maximum flow. If
provided it will be reused instead of recreated. Default value: None.

• cutoff (integer, float) – If specified, the maximum flow algorithm will terminate
when the flow value reaches or exceeds the cutoff. This is only for the algorithms that sup-
port the cutoff parameter: edmonds_karp() and shortest_augmenting_path().
Other algorithms will ignore this parameter. Default value: None.

Returns K – local node connectivity for nodes s and t

Return type integer

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:

>>> from networkx.algorithms.connectivity import local_node_connectivity

We use in this example the platonic icosahedral graph, which has node connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_node_connectivity(G, 0, 6)
5

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that
you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity,
and the residual network for the underlying maximum flow computation.

Example of how to compute local node connectivity among all pairs of nodes of the platonic icosahedral graph
reusing the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
...
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
...
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

4.13. Connectivity 233



NetworkX Reference, Release 1.11

You can also use alternative flow algorithms for computing node connectivity. For instance, in dense
networks the algorithm shortest_augmenting_path() will usually perform better than the default
edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of node connectivity. We compute the maximum flow using, by default,
the edmonds_karp() algorithm (see: maximum_flow()) on an auxiliary digraph build from the original
input graph:

For an undirected graph G having 𝑛 nodes and 𝑚 edges we derive a directed graph H with 2𝑛 nodes and 2𝑚+𝑛
arcs by replacing each original node 𝑣 with two nodes 𝑣𝐴, 𝑣𝐵 linked by an (internal) arc in H. Then for each
edge (𝑢, 𝑣) in G we add two arcs (𝑢𝐵 , 𝑣𝐴) and (𝑣𝐵 , 𝑢𝐴) in H. Finally we set the attribute capacity = 1 for each
arc in H 1 .

For a directed graph G having 𝑛 nodes and 𝑚 arcs we derive a directed graph H with 2𝑛 nodes and 𝑚 + 𝑛 arcs
by replacing each original node 𝑣 with two nodes 𝑣𝐴, 𝑣𝐵 linked by an (internal) arc (𝑣𝐴, 𝑣𝐵) in H. Then for
each arc (𝑢, 𝑣) in G we add one arc (𝑢𝐵 , 𝑣𝐴) in H. Finally we set the attribute capacity = 1 for each arc in H.

This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of
a minimum s-t-cut.

See also:

local_edge_connectivity(), node_connectivity(), minimum_node_cut(),
maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

node_connectivity

node_connectivity(G, s=None, t=None, flow_func=None)
Returns node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it
trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum
number of nodes that must be removed to break all paths from source to target in G.

Parameters

• G (NetworkX graph) – Undirected graph

• s (node) – Source node. Optional. Default value: None.

• t (node) – Target node. Optional. Default value: None.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function

1 Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, ‘Network Analysis: Method-
ological Foundations’, Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-
augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
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(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns K – Node connectivity of G, or local node connectivity if source and target are provided.

Return type integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected
>>> G = nx.icosahedral_graph()
>>> nx.node_connectivity(G)
5

You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path() will usually perform better than the default
edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.node_connectivity(G, flow_func=shortest_augmenting_path)
5

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node
connectivity.

>>> nx.node_connectivity(G, 3, 7)
5

If you need to perform several local computations among different pairs of nodes on the same graph,
it is recommended that you reuse the data structures used in the maximum flow computations. See
local_node_connectivity() for details.

Notes

This is a flow based implementation of node connectivity. The algorithm works by solving 𝑂((𝑛−𝛿−1+𝛿(𝛿−
1)/2)) maximum flow problems on an auxiliary digraph. Where 𝛿 is the minimum degree of G. For details about
the auxiliary digraph and the computation of local node connectivity see local_node_connectivity().
This implementation is based on algorithm 11 in 1.

See also:

local_node_connectivity(), edge_connectivity(), maximum_flow(),
edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

4.13.4 Flow-based Minimum Cuts

Flow based cut algorithms

minimum_edge_cut(G[, s, t, flow_func]) Returns a set of edges of minimum cardinality that disconnects G.
Continued on next page

1 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
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Table 4.49 – continued from previous page
minimum_node_cut(G[, s, t, flow_func]) Returns a set of nodes of minimum cardinality that disconnects G.
minimum_st_edge_cut(G, s, t[, flow_func, ...]) Returns the edges of the cut-set of a minimum (s, t)-cut.
minimum_st_node_cut(G, s, t[, flow_func, ...]) Returns a set of nodes of minimum cardinality that disconnect source from target in G.

minimum_edge_cut

minimum_edge_cut(G, s=None, t=None, flow_func=None)
Returns a set of edges of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the set of edges of minimum cardinality that, if
removed, would break all paths among source and target in G. If not, it returns a set of edges of minimum
cardinality that disconnects G.

Parameters

• G (NetworkX graph) –

• s (node) – Source node. Optional. Default value: None.

• t (node) – Target node. Optional. Default value: None.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns cutset – Set of edges that, if removed, would disconnect G. If source and target nodes are
provided, the set contians the edges that if removed, would destroy all paths between source and
target.

Return type set

Examples

>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_edge_cut(G))
5

You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path() will usually perform better than the default
edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path))
5

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge
connectivity.

>>> nx.edge_connectivity(G, 3, 7)
5
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If you need to perform several local computations among different pairs of nodes on the same graph,
it is recommended that you reuse the data structures used in the maximum flow computations. See
local_edge_connectivity() for details.

Notes

This is a flow based implementation of minimum edge cut. For undirected graphs the algorithm works by
finding a ‘small’ dominating set of nodes of G (see algorithm 7 in 1) and computing the maximum flow between
an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in 1.
For directed graphs, the algorithm does n calls to the max flow function. It is an implementation of algorithm 8
in 1.

See also:

minimum_st_edge_cut(), minimum_node_cut(), stoer_wagner(),
node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()

References

minimum_node_cut

minimum_node_cut(G, s=None, t=None, flow_func=None)
Returns a set of nodes of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the set of nodes of minimum cardinality that, if
removed, would destroy all paths among source and target in G. If not, it returns a set of nodes of minimum
cardinality that disconnects G.

Parameters

• G (NetworkX graph) –

• s (node) – Source node. Optional. Default value: None.

• t (node) – Target node. Optional. Default value: None.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

Returns cutset – Set of nodes that, if removed, would disconnect G. If source and target nodes are
provided, the set contians the nodes that if removed, would destroy all paths between source and
target.

Return type set

Examples

1 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
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>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> node_cut = nx.minimum_node_cut(G)
>>> len(node_cut)
5

You can use alternative flow algorithms for the underlying maximum flow computation. In dense net-
works the algorithm shortest_augmenting_path() will usually perform better than the default
edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path)
True

If you specify a pair of nodes (source and target) as parameters, this function returns a local st node cut.

>>> len(nx.minimum_node_cut(G, 3, 7))
5

If you need to perform several local st cuts among different pairs of nodes on the same graph, it is recommended
that you reuse the data structures used in the maximum flow computations. See minimum_st_node_cut()
for details.

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of
maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation
is based on algorithm 11 in 1.

See also:

minimum_st_node_cut(), minimum_cut(), minimum_edge_cut(), stoer_wagner(),
node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()

References

minimum_st_edge_cut

minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)
Returns the edges of the cut-set of a minimum (s, t)-cut.

This function returns the set of edges of minimum cardinality that, if removed, would destroy all paths among
source and target in G. Edge weights are not considered

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.
1 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
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• auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node
connectivity. It has to have a graph attribute called mapping with a dictionary mapping node
names in G and in the auxiliary digraph. If provided it will be reused instead of recreated.
Default value: None.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See node_connectivity() for details. The choice of
the default function may change from version to version and should not be relied on. Default
value: None.

• residual (NetworkX DiGraph) – Residual network to compute maximum flow. If
provided it will be reused instead of recreated. Default value: None.

Returns cutset – Set of edges that, if removed from the graph, will disconnect it.

Return type set

See also:

minimum_cut(), minimum_node_cut(), minimum_edge_cut(), stoer_wagner(),
node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:

>>> from networkx.algorithms.connectivity import minimum_st_edge_cut

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len(minimum_st_edge_cut(G, 0, 6))
5

If you need to compute local edge cuts on several pairs of nodes in the same graph, it is recommended that you
reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity,
and the residual network for the underlying maximum flow computation.

Example of how to compute local edge cuts among all pairs of nodes of the platonic icosahedral graph reusing
the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
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>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R))
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing edge cuts. For instance, in dense networks the algo-
rithm shortest_augmenting_path() will usually perform better than the default edmonds_karp()
which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to
be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5

minimum_st_node_cut

minimum_st_node_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)
Returns a set of nodes of minimum cardinality that disconnect source from target in G.

This function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among
source and target in G.

Parameters

• G (NetworkX graph) –

• s (node) – Source node.

• t (node) – Target node.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes. The function has to accept at least three parameters: a Digraph, a source node,
and a target node. And return a residual network that follows NetworkX conventions (see
maximum_flow() for details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice of the default function
may change from version to version and should not be relied on. Default value: None.

• auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node
connectivity. It has to have a graph attribute called mapping with a dictionary mapping node
names in G and in the auxiliary digraph. If provided it will be reused instead of recreated.
Default value: None.

• residual (NetworkX DiGraph) – Residual network to compute maximum flow. If
provided it will be reused instead of recreated. Default value: None.

Returns cutset – Set of nodes that, if removed, would destroy all paths between source and target
in G.

Return type set

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the
connectivity package:
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>>> from networkx.algorithms.connectivity import minimum_st_node_cut

We use in this example the platonic icosahedral graph, which has node connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len(minimum_st_node_cut(G, 0, 6))
5

If you need to compute local st cuts between several pairs of nodes in the same graph, it is recommended that
you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity
and node cuts, and the residual network for the underlying maximum flow computation.

Example of how to compute local st node cuts reusing the data structures:

>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R))
5

You can also use alternative flow algorithms for computing minimum st node cuts. For instance, in dense
networks the algorithm shortest_augmenting_path() will usually perform better than the default
edmonds_karp() which is faster for sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of
maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation
is based on algorithm 11 in 1.

See also:

minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(),
edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(),
shortest_augmenting_path()

1 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
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4.13.5 Stoer-Wagner minimum cut

Stoer-Wagner minimum cut algorithm.

stoer_wagner(G[, weight, heap]) Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

stoer_wagner

stoer_wagner(G, weight=’weight’, heap=<class ‘networkx.utils.heaps.BinaryHeap’>)
Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases,
all weights must be nonnegative.

The running time of the algorithm depends on the type of heaps used:

Type of heap Running time
Binary heap 𝑂(𝑛(𝑚 + 𝑛) log 𝑛)
Fibonacci heap 𝑂(𝑛𝑚 + 𝑛2 log 𝑛)

Pairing heap 𝑂(22
√
log log𝑛𝑛𝑚 + 𝑛2 log 𝑛)

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute named by
the weight parameter below. If this attribute is not present, the edge is considered to have
unit weight.

• weight (string) – Name of the weight attribute of the edges. If the attribute is not
present, unit weight is assumed. Default value: ‘weight’.

• heap (class) – Type of heap to be used in the algorithm. It should be a subclass of
MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is recommeded over
PairingHeap for Python implementations without optimized attribute accesses (e.g.,
CPython) despite a slower asymptotic running time. For Python implementations with opti-
mized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default
value: BinaryHeap.

Returns

• cut_value (integer or float) – The sum of weights of edges in a minimum cut.

• partition (pair of node lists) – A partitioning of the nodes that defines a minimum cut.

Raises

• NetworkXNotImplemented – If the graph is directed or a multigraph.

• NetworkXError – If the graph has less than two nodes, is not connected or has a negative-
weighted edge.
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Examples

>>> G = nx.Graph()
>>> G.add_edge('x','a', weight=3)
>>> G.add_edge('x','b', weight=1)
>>> G.add_edge('a','c', weight=3)
>>> G.add_edge('b','c', weight=5)
>>> G.add_edge('b','d', weight=4)
>>> G.add_edge('d','e', weight=2)
>>> G.add_edge('c','y', weight=2)
>>> G.add_edge('e','y', weight=3)
>>> cut_value, partition = nx.stoer_wagner(G)
>>> cut_value
4

4.13.6 Utils for flow-based connectivity

Utilities for connectivity package

build_auxiliary_edge_connectivity(G) Auxiliary digraph for computing flow based edge connectivity
build_auxiliary_node_connectivity(G) Creates a directed graph D from an undirected graph G to compute flow based node connectivity.

build_auxiliary_edge_connectivity

build_auxiliary_edge_connectivity(G)
Auxiliary digraph for computing flow based edge connectivity

If the input graph is undirected, we replace each edge (𝑢,‘v‘) with two reciprocal arcs (𝑢, 𝑣) and (𝑣, 𝑢) and
then we set the attribute ‘capacity’ for each arc to 1. If the input graph is directed we simply add the ‘capacity’
attribute. Part of algorithm 1 in 1 .

References

build_auxiliary_node_connectivity

build_auxiliary_node_connectivity(G)
Creates a directed graph D from an undirected graph G to compute flow based node connectivity.

For an undirected graph G having 𝑛 nodes and 𝑚 edges we derive a directed graph D with 2𝑛 nodes and 2𝑚+𝑛
arcs by replacing each original node 𝑣 with two nodes 𝑣𝐴, 𝑣𝐵 linked by an (internal) arc in D. Then for each
edge (𝑢, 𝑣) in G we add two arcs (𝑢𝐵, 𝑣𝐴) and (𝑣𝐵, 𝑢𝐴) in D. Finally we set the attribute capacity = 1 for each
arc in D 1.

For a directed graph having 𝑛 nodes and 𝑚 arcs we derive a directed graph D with 2𝑛 nodes and 𝑚 + 𝑛 arcs by
replacing each original node 𝑣 with two nodes 𝑣𝐴, 𝑣𝐵 linked by an (internal) arc (𝑣𝐴, 𝑣𝐵) in D. Then for each
arc (𝑢, 𝑣) in G we add one arc (𝑢𝐵, 𝑣𝐴) in D. Finally we set the attribute capacity = 1 for each arc in D.

A dictionary with a mapping between nodes in the original graph and the auxiliary digraph is stored as a graph
attribute: H.graph[’mapping’].

1 Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a chapter, look for the reference of the book).
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

1 Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, ‘Network Analysis: Method-
ological Foundations’, Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-
augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
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4.14 Cores

Find the k-cores of a graph.

The k-core is found by recursively pruning nodes with degrees less than k.

See the following reference for details:

An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049

core_number(G) Return the core number for each vertex.
k_core(G[, k, core_number]) Return the k-core of G.
k_shell(G[, k, core_number]) Return the k-shell of G.
k_crust(G[, k, core_number]) Return the k-crust of G.
k_corona(G, k[, core_number]) Return the k-corona of G.

4.14.1 core_number

core_number(G)
Return the core number for each vertex.

A k-core is a maximal subgraph that contains nodes of degree k or more.

The core number of a node is the largest value k of a k-core containing that node.

Parameters G (NetworkX graph) – A graph or directed graph

Returns core_number – A dictionary keyed by node to the core number.

Return type dictionary

Raises NetworkXError – The k-core is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

References

4.14.2 k_core

k_core(G, k=None, core_number=None)
Return the k-core of G.

A k-core is a maximal subgraph that contains nodes of degree k or more.

Parameters

• G (NetworkX graph) – A graph or directed graph

• k (int, optional) – The order of the core. If not specified return the main core.
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• core_number (dictionary, optional) – Precomputed core numbers for the graph
G.

Returns G – The k-core subgraph

Return type NetworkX graph

Raises NetworkXError – The k-core is not defined for graphs with self loops or parallel edges.

Notes

The main core is the core with the largest degree.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number()

References

4.14.3 k_shell

k_shell(G, k=None, core_number=None)
Return the k-shell of G.

The k-shell is the subgraph of nodes in the k-core but not in the (k+1)-core.

Parameters

• G (NetworkX graph) – A graph or directed graph.

• k (int, optional) – The order of the shell. If not specified return the main shell.

• core_number (dictionary, optional) – Precomputed core numbers for the graph
G.

Returns G – The k-shell subgraph

Return type NetworkX graph

Raises NetworkXError – The k-shell is not defined for graphs with self loops or parallel edges.

Notes

This is similar to k_corona but in that case only neighbors in the k-core are considered.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number(), k_corona()
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4.14.4 k_crust

k_crust(G, k=None, core_number=None)
Return the k-crust of G.

The k-crust is the graph G with the k-core removed.

Parameters

• G (NetworkX graph) – A graph or directed graph.

• k (int, optional) – The order of the shell. If not specified return the main crust.

• core_number (dictionary, optional) – Precomputed core numbers for the graph
G.

Returns G – The k-crust subgraph

Return type NetworkX graph

Raises NetworkXError – The k-crust is not defined for graphs with self loops or parallel edges.

Notes

This definition of k-crust is different than the definition in 1. The k-crust in 1 is equivalent to the k+1 crust of
this algorithm.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number()

References

4.14.5 k_corona

k_corona(G, k, core_number=None)
Return the k-corona of G.

The k-corona is the subgraph of nodes in the k-core which have exactly k neighbours in the k-core.

Parameters

• G (NetworkX graph) – A graph or directed graph

• k (int) – The order of the corona.

• core_number (dictionary, optional) – Precomputed core numbers for the graph
G.

Returns G – The k-corona subgraph

1 A model of Internet topology using k-shell decomposition Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS
July 3, 2007 vol. 104 no. 27 11150-11154 http://www.pnas.org/content/104/27/11150.full
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Return type NetworkX graph

Raises NetworkXError – The k-cornoa is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

core_number()

References

4.15 Cycles

4.15.1 Cycle finding algorithms

cycle_basis(G[, root]) Returns a list of cycles which form a basis for cycles of G.
simple_cycles(G) Find simple cycles (elementary circuits) of a directed graph.
find_cycle(G[, source, orientation]) Returns the edges of a cycle found via a directed, depth-first traversal.

4.15.2 cycle_basis

cycle_basis(G, root=None)
Returns a list of cycles which form a basis for cycles of G.

A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written
as a sum of cycles in the basis. Here summation of cycles is defined as “exclusive or” of the edges. Cycle bases
are useful, e.g. when deriving equations for electric circuits using Kirchhoff’s Laws.

Parameters

• G (NetworkX Graph) –

• root (node, optional) – Specify starting node for basis.

Returns

• A list of cycle lists. Each cycle list is a list of nodes

• which forms a cycle (loop) in G.

Examples

>>> G=nx.Graph()
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([0,3,4,5])
>>> print(nx.cycle_basis(G,0))
[[3, 4, 5, 0], [1, 2, 3, 0]]
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Notes

This is adapted from algorithm CACM 491 1.

References

See also:

simple_cycles()

4.15.3 simple_cycles

simple_cycles(G)
Find simple cycles (elementary circuits) of a directed graph.

An simple cycle, or elementary circuit, is a closed path where no node appears twice, except that the first and
last node are the same. Two elementary circuits are distinct if they are not cyclic permutations of each other.

This is a nonrecursive, iterator/generator version of Johnson’s algorithm 1. There may be better algorithms for
some cases 2 3.

Parameters G (NetworkX DiGraph) – A directed graph

Returns cycle_generator – A generator that produces elementary cycles of the graph. Each cycle
is a list of nodes with the first and last nodes being the same.

Return type generator

Examples

>>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)])
>>> len(list(nx.simple_cycles(G)))
5

To filter the cycles so that they don’t include certain nodes or edges, copy your graph and eliminate those nodes
or edges before calling

>>> copyG = G.copy()
>>> copyG.remove_nodes_from([1])
>>> copyG.remove_edges_from([(0, 1)])
>>> len(list(nx.simple_cycles(copyG)))
3

Notes

The implementation follows pp. 79-80 in 1.

The time complexity is 𝑂((𝑛 + 𝑒)(𝑐 + 1)) for 𝑛 nodes, 𝑒 edges and 𝑐 elementary circuits.

1 Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.
1 Finding all the elementary circuits of a directed graph. D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.

http://dx.doi.org/10.1137/0204007
2 Enumerating the cycles of a digraph: a new preprocessing strategy. G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.
3 A search strategy for the elementary cycles of a directed graph. J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS, v. 16,

no. 2, 192-204, 1976.
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References

See also:

cycle_basis()

4.15.4 find_cycle

find_cycle(G, source=None, orientation=’original’)
Returns the edges of a cycle found via a directed, depth-first traversal.

Parameters

• G (graph) – A directed/undirected graph/multigraph.

• source (node, list of nodes) – The node from which the traversal begins. If
None, then a source is chosen arbitrarily and repeatedly until all edges from each node in
the graph are searched.

• orientation (’original’ | ’reverse’ | ’ignore’) – For directed graphs
and directed multigraphs, edge traversals need not respect the original orientation of the
edges. When set to ‘reverse’, then every edge will be traversed in the reverse direction.
When set to ‘ignore’, then each directed edge is treated as a single undirected edge that
can be traversed in either direction. For undirected graphs and undirected multigraphs, this
parameter is meaningless and is not consulted by the algorithm.

Returns edges – A list of directed edges indicating the path taken for the loop. If no cycle is found,
then edges will be an empty list. For graphs, an edge is of the form (u, v) where u and v are
the tail and head of the edge as determined by the traversal. For multigraphs, an edge is of the
form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v
are always in the order of the actual directed edge. If orientation is ‘ignore’, then an edge takes
the form (u, v, key, direction) where direction indicates if the edge was followed in the forward
(tail to head) or reverse (head to tail) direction. When the direction is forward, the value of
direction is ‘forward’. When the direction is reverse, the value of direction is ‘reverse’.

Return type directed edges

Examples

In this example, we construct a DAG and find, in the first call, that there are no directed cycles, and so an
exception is raised. In the second call, we ignore edge orientations and find that there is an undirected cycle.
Note that the second call finds a directed cycle while effectively traversing an undirected graph, and so, we
found an “undirected cycle”. This means that this DAG structure does not form a directed tree (which is also
known as a polytree).

>>> import networkx as nx
>>> G = nx.DiGraph([(0,1), (0,2), (1,2)])
>>> try:
... find_cycle(G, orientation='original')
... except:
... pass
...
>>> list(find_cycle(G, orientation='ignore'))
[(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]
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4.16 Directed Acyclic Graphs

ancestors(G, source) Return all nodes having a path to 𝑠𝑜𝑢𝑟𝑐𝑒 in G.
descendants(G, source) Return all nodes reachable from 𝑠𝑜𝑢𝑟𝑐𝑒 in G.
topological_sort(G[, nbunch, reverse]) Return a list of nodes in topological sort order.
topological_sort_recursive(G[, nbunch, reverse]) Return a list of nodes in topological sort order.
is_directed_acyclic_graph(G) Return True if the graph G is a directed acyclic graph (DAG) or False if not.
is_aperiodic(G) Return True if G is aperiodic.
transitive_closure(G) Returns transitive closure of a directed graph
antichains(G) Generates antichains from a DAG.
dag_longest_path(G) Returns the longest path in a DAG
dag_longest_path_length(G) Returns the longest path length in a DAG

4.16.1 ancestors

ancestors(G, source)
Return all nodes having a path to 𝑠𝑜𝑢𝑟𝑐𝑒 in G.

Parameters

• G (NetworkX DiGraph) –

• source (node in G) –

Returns ancestors – The ancestors of source in G

Return type set()

4.16.2 descendants

descendants(G, source)
Return all nodes reachable from 𝑠𝑜𝑢𝑟𝑐𝑒 in G.

Parameters

• G (NetworkX DiGraph) –

• source (node in G) –

Returns des – The descendants of source in G

Return type set()

4.16.3 topological_sort

topological_sort(G, nbunch=None, reverse=False)
Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears
before v in the topological sort order.

Parameters

• G (NetworkX digraph) – A directed graph

• nbunch (container of nodes (optional)) – Explore graph in specified order
given in nbunch

250 Chapter 4. Algorithms



NetworkX Reference, Release 1.11

• reverse (bool, optional) – Return postorder instead of preorder if True. Reverse
mode is a bit more efficient.

Raises

• NetworkXError – Topological sort is defined for directed graphs only. If the graph G is
undirected, a NetworkXError is raised.

• NetworkXUnfeasible – If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.

Notes

This algorithm is based on a description and proof in The Algorithm Design Manual 1 .

See also:

is_directed_acyclic_graph()

References

4.16.4 topological_sort_recursive

topological_sort_recursive(G, nbunch=None, reverse=False)
Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears
before v in the topological sort order.

Parameters

• G (NetworkX digraph) –

• nbunch (container of nodes (optional)) – Explore graph in specified order
given in nbunch

• reverse (bool, optional) – Return postorder instead of preorder if True. Reverse
mode is a bit more efficient.

Raises

• NetworkXError – Topological sort is defined for directed graphs only. If the graph G is
undirected, a NetworkXError is raised.

• NetworkXUnfeasible – If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.

Notes

This is a recursive version of topological sort.

See also:

topological_sort(), is_directed_acyclic_graph()
1 Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998). http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/
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4.16.5 is_directed_acyclic_graph

is_directed_acyclic_graph(G)
Return True if the graph G is a directed acyclic graph (DAG) or False if not.

Parameters G (NetworkX graph) – A graph

Returns is_dag – True if G is a DAG, false otherwise

Return type bool

4.16.6 is_aperiodic

is_aperiodic(G)
Return True if G is aperiodic.

A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph.

Parameters G (NetworkX DiGraph) – Graph

Returns aperiodic – True if the graph is aperiodic False otherwise

Return type boolean

Raises NetworkXError – If G is not directed

Notes

This uses the method outlined in 1, which runs in O(m) time given m edges in G. Note that a graph is not
aperiodic if it is acyclic as every integer trivial divides length 0 cycles.

References

4.16.7 transitive_closure

transitive_closure(G)
Returns transitive closure of a directed graph

The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that for all v,w in V there is an edge (v,w) in E+
if and only if there is a non-null path from v to w in G.

Parameters G (NetworkX DiGraph) – Graph

Returns TC – Graph

Return type NetworkX DiGraph

Raises NetworkXNotImplemented – If G is not directed
1 Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical

Modeling: A Multidisciplinary Approach, CRC Press.
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References

4.16.8 antichains

antichains(G)
Generates antichains from a DAG.

An antichain is a subset of a partially ordered set such that any two elements in the subset are incomparable.

Parameters G (NetworkX DiGraph) – Graph

Returns antichain

Return type generator object

Raises

• NetworkXNotImplemented – If G is not directed

• NetworkXUnfeasible – If G contains a cycle

Notes

This function was originally developed by Peter Jipsen and Franco Saliola for the SAGE project. It’s included
in NetworkX with permission from the authors. Original SAGE code at:

https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py

References

4.16.9 dag_longest_path

dag_longest_path(G)
Returns the longest path in a DAG

Parameters G (NetworkX DiGraph) – Graph

Returns path – Longest path

Return type list

Raises NetworkXNotImplemented – If G is not directed

See also:

dag_longest_path_length()

4.16.10 dag_longest_path_length

dag_longest_path_length(G)
Returns the longest path length in a DAG

Parameters G (NetworkX DiGraph) – Graph

Returns path_length – Longest path length

Return type int

Raises NetworkXNotImplemented – If G is not directed
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See also:

dag_longest_path()

4.17 Distance Measures

Graph diameter, radius, eccentricity and other properties.

center(G[, e]) Return the center of the graph G.
diameter(G[, e]) Return the diameter of the graph G.
eccentricity(G[, v, sp]) Return the eccentricity of nodes in G.
periphery(G[, e]) Return the periphery of the graph G.
radius(G[, e]) Return the radius of the graph G.

4.17.1 center

center(G, e=None)
Return the center of the graph G.

The center is the set of nodes with eccentricity equal to radius.

Parameters

• G (NetworkX graph) – A graph

• e (eccentricity dictionary, optional) – A precomputed dictionary of eccen-
tricities.

Returns c – List of nodes in center

Return type list

4.17.2 diameter

diameter(G, e=None)
Return the diameter of the graph G.

The diameter is the maximum eccentricity.

Parameters

• G (NetworkX graph) – A graph

• e (eccentricity dictionary, optional) – A precomputed dictionary of eccen-
tricities.

Returns d – Diameter of graph

Return type integer

See also:

eccentricity()
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4.17.3 eccentricity

eccentricity(G, v=None, sp=None)
Return the eccentricity of nodes in G.

The eccentricity of a node v is the maximum distance from v to all other nodes in G.

Parameters

• G (NetworkX graph) – A graph

• v (node, optional) – Return value of specified node

• sp (dict of dicts, optional) – All pairs shortest path lengths as a dictionary of
dictionaries

Returns ecc – A dictionary of eccentricity values keyed by node.

Return type dictionary

4.17.4 periphery

periphery(G, e=None)
Return the periphery of the graph G.

The periphery is the set of nodes with eccentricity equal to the diameter.

Parameters

• G (NetworkX graph) – A graph

• e (eccentricity dictionary, optional) – A precomputed dictionary of eccen-
tricities.

Returns p – List of nodes in periphery

Return type list

4.17.5 radius

radius(G, e=None)
Return the radius of the graph G.

The radius is the minimum eccentricity.

Parameters

• G (NetworkX graph) – A graph

• e (eccentricity dictionary, optional) – A precomputed dictionary of eccen-
tricities.

Returns r – Radius of graph

Return type integer
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4.18 Distance-Regular Graphs

4.18.1 Distance-regular graphs
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is_distance_regular(G) Returns True if the graph is distance regular, False otherwise.
intersection_array(G) Returns the intersection array of a distance-regular graph.
global_parameters(b, c) Return global parameters for a given intersection array.

4.18.2 is_distance_regular

is_distance_regular(G)
Returns True if the graph is distance regular, False otherwise.

A connected graph G is distance-regular if for any nodes x,y and any integers i,j=0,1,...,d (where d is the graph
diameter), the number of vertices at distance i from x and distance j from y depends only on i,j and the graph
distance between x and y, independently of the choice of x and y.

Parameters G (Networkx graph (undirected)) –

Returns True if the graph is Distance Regular, False otherwise

Return type bool

Examples

>>> G=nx.hypercube_graph(6)
>>> nx.is_distance_regular(G)
True

See also:

intersection_array(), global_parameters()

Notes

For undirected and simple graphs only

References

4.18.3 intersection_array

intersection_array(G)
Returns the intersection array of a distance-regular graph.

Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d such that for any 2 vertices x,y in G at a
distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a
distance of i+1 from x.

A distance regular graph’sintersection array is given by, [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d]

Parameters G (Networkx graph (undirected)) –

Returns b,c

Return type tuple of lists

4.18. Distance-Regular Graphs 257

http://docs.python.org/library/functions.html#bool


NetworkX Reference, Release 1.11

Examples

>>> G=nx.icosahedral_graph()
>>> nx.intersection_array(G)
([5, 2, 1], [1, 2, 5])

References

See also:

global_parameters()

4.18.4 global_parameters

global_parameters(b, c)
Return global parameters for a given intersection array.

Given a distance-regular graph G with integers b_i, c_i,i = 0,....,d such that for any 2 vertices x,y in G at a
distance i=d(x,y), there are exactly c_i neighbors of y at a distance of i-1 from x and b_i neighbors of y at a
distance of i+1 from x.

Thus, a distance regular graph has the global parameters, [[c_0,a_0,b_0],[c_1,a_1,b_1],......,[c_d,a_d,b_d]] for
the intersection array [b_0,b_1,.....b_{d-1};c_1,c_2,.....c_d] where a_i+b_i+c_i=k , k= degree of every vertex.

Parameters b,c (tuple of lists) –

Returns p

Return type list of three-tuples

Examples

>>> G=nx.dodecahedral_graph()
>>> b,c=nx.intersection_array(G)
>>> list(nx.global_parameters(b,c))
[(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]

References

See also:

intersection_array()

4.19 Dominance

Dominance algorithms.

immediate_dominators(G, start) Returns the immediate dominators of all nodes of a directed graph.
dominance_frontiers(G, start) Returns the dominance frontiers of all nodes of a directed graph.
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4.19.1 immediate_dominators

immediate_dominators(G, start)
Returns the immediate dominators of all nodes of a directed graph.

Parameters

• G (a DiGraph or MultiDiGraph) – The graph where dominance is to be computed.

• start (node) – The start node of dominance computation.

Returns idom – A dict containing the immediate dominators of each node reachable from start.

Return type dict keyed by nodes

Raises

• NetworkXNotImplemented – If G is undirected.

• NetworkXError – If start is not in G.

Notes

Except for start, the immediate dominators are the parents of their corresponding nodes in the dominator tree.

Examples

>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted(nx.immediate_dominators(G, 1).items())
[(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]

References

4.19.2 dominance_frontiers

dominance_frontiers(G, start)
Returns the dominance frontiers of all nodes of a directed graph.

Parameters

• G (a DiGraph or MultiDiGraph) – The graph where dominance is to be computed.

• start (node) – The start node of dominance computation.

Returns df – A dict containing the dominance frontiers of each node reachable from start as lists.

Return type dict keyed by nodes

Raises

• NetworkXNotImplemented – If G is undirected.

• NetworkXError – If start is not in G.

Examples
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>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
[(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]

References

4.20 Dominating Sets

dominating_set(G[, start_with]) Finds a dominating set for the graph G.
is_dominating_set(G, nbunch) Checks if nodes in nbunch are a dominating set for G.

4.20.1 dominating_set

dominating_set(G, start_with=None)
Finds a dominating set for the graph G.

A dominating set for a graph 𝐺 = (𝑉,𝐸) is a node subset 𝐷 of 𝑉 such that every node not in 𝐷 is adjacent to
at least one member of 𝐷 1.

Parameters

• G (NetworkX graph) –

• start_with (Node (default=None)) – Node to use as a starting point for the algo-
rithm.

Returns D – A dominating set for G.

Return type set

Notes

This function is an implementation of algorithm 7 in 2 which finds some dominating set, not necessarily the
smallest one.

See also:

is_dominating_set()

References

4.20.2 is_dominating_set

is_dominating_set(G, nbunch)
Checks if nodes in nbunch are a dominating set for G.

A dominating set for a graph 𝐺 = (𝑉,𝐸) is a node subset 𝐷 of 𝑉 such that every node not in 𝐷 is adjacent to
at least one member of 𝐷 1.

Parameters
1 http://en.wikipedia.org/wiki/Dominating_set
2 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
1 http://en.wikipedia.org/wiki/Dominating_set
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• G (NetworkX graph) –

• nbunch (Node container) –

See also:

dominating_set()

References

4.21 Eulerian

Eulerian circuits and graphs.

is_eulerian(G) Return True if G is an Eulerian graph, False otherwise.
eulerian_circuit(G[, source]) Return the edges of an Eulerian circuit in G.

4.21.1 is_eulerian

is_eulerian(G)
Return True if G is an Eulerian graph, False otherwise.

An Eulerian graph is a graph with an Eulerian circuit.

Parameters G (graph) – A NetworkX Graph

Examples

>>> nx.is_eulerian(nx.DiGraph({0:[3], 1:[2], 2:[3], 3:[0, 1]}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False

Notes

This implementation requires the graph to be connected (or strongly connected for directed graphs).

4.21.2 eulerian_circuit

eulerian_circuit(G, source=None)
Return the edges of an Eulerian circuit in G.

An Eulerian circuit is a path that crosses every edge in G exactly once and finishes at the starting node.

Parameters

• G (NetworkX Graph or DiGraph) – A directed or undirected graph

• source (node, optional) – Starting node for circuit.

Returns edges – A generator that produces edges in the Eulerian circuit.
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Return type generator

Raises NetworkXError – If the graph is not Eulerian.

See also:

is_eulerian()

Notes

Linear time algorithm, adapted from 1. General information about Euler tours 2.

References

Examples

>>> G=nx.complete_graph(3)
>>> list(nx.eulerian_circuit(G))
[(0, 2), (2, 1), (1, 0)]
>>> list(nx.eulerian_circuit(G,source=1))
[(1, 2), (2, 0), (0, 1)]
>>> [u for u,v in nx.eulerian_circuit(G)] # nodes in circuit
[0, 2, 1]

4.22 Flows

4.22.1 Maximum Flow

maximum_flow(G, s, t[, capacity, flow_func]) Find a maximum single-commodity flow.
maximum_flow_value(G, s, t[, capacity, ...]) Find the value of maximum single-commodity flow.
minimum_cut(G, s, t[, capacity, flow_func]) Compute the value and the node partition of a minimum (s, t)-cut.
minimum_cut_value(G, s, t[, capacity, flow_func]) Compute the value of a minimum (s, t)-cut.

maximum_flow

maximum_flow(G, s, t, capacity=’capacity’, flow_func=None, **kwargs)
Find a maximum single-commodity flow.

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

1 J. Edmonds, E. L. Johnson. Matching, Euler tours and the Chinese postman. Mathematical programming, Volume 5, Issue 1 (1973), 111-114.
2 http://en.wikipedia.org/wiki/Eulerian_path
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• flow_func (function) – A function for computing the maximum flow among a pair
of nodes in a capacitated graph. The function has to accept at least three parameters: a
Graph or Digraph, a source node, and a target node. And return a residual network that
follows NetworkX conventions (see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for alternative algorithms. The
choice of the default function may change from version to version and should not be relied
on. Default value: None.

• kwargs (Any other keyword parameter is passed to the function
that) – computes the maximum flow.

Returns

• flow_value (integer, float) – Value of the maximum flow, i.e., net outflow from the source.

• flow_dict (dict) – A dictionary containing the value of the flow that went through each edge.

Raises

• NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

• NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow_value(), minimum_cut(), minimum_cut_value(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G.

For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. Reacha-
bility to t using only edges (u, v) such that R[u][v][’flow’] < R[u][v][’capacity’] induces
a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
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>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow returns both the value of the maximum flow and a dictionary with all flows.

>>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y')
>>> flow_value
3.0
>>> print(flow_dict['x']['b'])
1.0

You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow(G, 'x', 'y',
... flow_func=shortest_augmenting_path)[0]
True

maximum_flow_value

maximum_flow_value(G, s, t, capacity=’capacity’, flow_func=None, **kwargs)
Find the value of maximum single-commodity flow.

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes in a capacitated graph. The function has to accept at least three parameters: a
Graph or Digraph, a source node, and a target node. And return a residual network that
follows NetworkX conventions (see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for alternative algorithms. The
choice of the default function may change from version to version and should not be relied
on. Default value: None.

• kwargs (Any other keyword parameter is passed to the function
that) – computes the maximum flow.

Returns flow_value – Value of the maximum flow, i.e., net outflow from the source.

Return type integer, float

Raises

• NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.
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• NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow(), minimum_cut(), minimum_cut_value(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G.

For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. Reacha-
bility to t using only edges (u, v) such that R[u][v][’flow’] < R[u][v][’capacity’] induces
a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow_value computes only the value of the maximum flow:

>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0

You can also use alternative algorithms for computing the maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow_value(G, 'x', 'y',
... flow_func=shortest_augmenting_path)
True
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minimum_cut

minimum_cut(G, s, t, capacity=’capacity’, flow_func=None, **kwargs)
Compute the value and the node partition of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a
maximum flow.

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes in a capacitated graph. The function has to accept at least three parameters: a
Graph or Digraph, a source node, and a target node. And return a residual network that
follows NetworkX conventions (see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for alternative algorithms. The
choice of the default function may change from version to version and should not be relied
on. Default value: None.

• kwargs (Any other keyword parameter is passed to the function
that) – computes the maximum flow.

Returns

• cut_value (integer, float) – Value of the minimum cut.

• partition (pair of node sets) – A partitioning of the nodes that defines a minimum cut.

Raises NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have infinite
capacity and the function raises a NetworkXError.

See also:

maximum_flow(), maximum_flow_value(), minimum_cut_value(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G.

For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

266 Chapter 4. Algorithms

http://docs.python.org/library/string.html#module-string


NetworkX Reference, Release 1.11

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. Reacha-
bility to t using only edges (u, v) such that R[u][v][’flow’] < R[u][v][’capacity’] induces
a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut computes both the value of the minimum cut and the node partition:

>>> cut_value, partition = nx.minimum_cut(G, 'x', 'y')
>>> reachable, non_reachable = partition

‘partition’ here is a tuple with the two sets of nodes that define the minimum cut. You can compute the cut set
of edges that induce the minimum cut as follows:

>>> cutset = set()
>>> for u, nbrs in ((n, G[n]) for n in reachable):
... cutset.update((u, v) for v in nbrs if v in non_reachable)
>>> print(sorted(cutset))
[('c', 'y'), ('x', 'b')]
>>> cut_value == sum(G.edge[u][v]['capacity'] for (u, v) in cutset)
True

You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut(G, 'x', 'y',
... flow_func=shortest_augmenting_path)[0]
True

minimum_cut_value

minimum_cut_value(G, s, t, capacity=’capacity’, flow_func=None, **kwargs)
Compute the value of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a
maximum flow.

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

4.22. Flows 267



NetworkX Reference, Release 1.11

• t (node) – Sink node for the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• flow_func (function) – A function for computing the maximum flow among a pair
of nodes in a capacitated graph. The function has to accept at least three parameters: a
Graph or Digraph, a source node, and a target node. And return a residual network that
follows NetworkX conventions (see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for alternative algorithms. The
choice of the default function may change from version to version and should not be relied
on. Default value: None.

• kwargs (Any other keyword parameter is passed to the function
that) – computes the maximum flow.

Returns cut_value – Value of the minimum cut.

Return type integer, float

Raises NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have infinite
capacity and the function raises a NetworkXError.

See also:

maximum_flow(), maximum_flow_value(), minimum_cut(), edmonds_karp(),
preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G.

For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. Reacha-
bility to t using only edges (u, v) such that R[u][v][’flow’] < R[u][v][’capacity’] induces
a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate
the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
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>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut_value computes only the value of the minimum cut:

>>> cut_value = nx.minimum_cut_value(G, 'x', 'y')
>>> cut_value
3.0

You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut_value(G, 'x', 'y',
... flow_func=shortest_augmenting_path)
True

4.22.2 Edmonds-Karp

edmonds_karp(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

edmonds_karp

edmonds_karp(G, s, t, capacity=’capacity’, residual=None, value_only=False, cutoff=None)
Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of 𝑂(𝑛𝑚2) for 𝑛 nodes and 𝑚 edges.

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• residual (NetworkX graph) – Residual network on which the algorithm is to be ex-
ecuted. If None, a new residual network is created. Default value: None.

• value_only (bool) – If True compute only the value of the maximum flow. This param-
eter will be ignored by this algorithm because it is not applicable.

• cutoff (integer, float) – If specified, the algorithm will terminate when the flow
value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine
a minimum cut. Default value: None.

Returns R – Residual network after computing the maximum flow.

Return type NetworkX DiGraph
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Raises

• NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

• NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G.

For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. If
cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v][’flow’] <
R[u][v][’capacity’] induces a minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import edmonds_karp

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = edmonds_karp(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True

4.22.3 Shortest Augmenting Path
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shortest_augmenting_path(G, s, t[, ...]) Find a maximum single-commodity flow using the shortest augmenting path algorithm.

shortest_augmenting_path

shortest_augmenting_path(G, s, t, capacity=’capacity’, residual=None, value_only=False,
two_phase=False, cutoff=None)

Find a maximum single-commodity flow using the shortest augmenting path algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of 𝑂(𝑛2𝑚) for 𝑛 nodes and 𝑚 edges.

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• residual (NetworkX graph) – Residual network on which the algorithm is to be ex-
ecuted. If None, a new residual network is created. Default value: None.

• value_only (bool) – If True compute only the value of the maximum flow. This param-
eter will be ignored by this algorithm because it is not applicable.

• two_phase (bool) – If True, a two-phase variant is used. The two-phase variant improves
the running time on unit-capacity networks from 𝑂(𝑛𝑚) to 𝑂(min(𝑛2/3,𝑚1/2)𝑚). Default
value: False.

• cutoff (integer, float) – If specified, the algorithm will terminate when the flow
value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine
a minimum cut. Default value: None.

Returns R – Residual network after computing the maximum flow.

Return type NetworkX DiGraph

Raises

• NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

• NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow(), minimum_cut(), edmonds_karp(), preflow_push()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G.
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For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. If
cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v][’flow’] <
R[u][v][’capacity’] induces a minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import shortest_augmenting_path

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = shortest_augmenting_path(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True

4.22.4 Preflow-Push

preflow_push(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

preflow_push

preflow_push(G, s, t, capacity=’capacity’, residual=None, global_relabel_freq=1, value_only=False)
Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details
about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of 𝑂(𝑛2
√
𝑚) for 𝑛 nodes and 𝑚 edges.

Parameters

• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘ca-
pacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.
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• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• residual (NetworkX graph) – Residual network on which the algorithm is to be ex-
ecuted. If None, a new residual network is created. Default value: None.

• global_relabel_freq (integer, float) – Relative frequency of applying the
global relabeling heuristic to speed up the algorithm. If it is None, the heuristic is disabled.
Default value: 1.

• value_only (bool) – If False, compute a maximum flow; otherwise, compute a max-
imum preflow which is enough for computing the maximum flow value. Default value:
False.

Returns R – Residual network after computing the maximum flow.

Return type NetworkX DiGraph

Raises

• NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If the
input graph is an instance of one of these two classes, a NetworkXError is raised.

• NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a feasible
flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow(), minimum_cut(), edmonds_karp(), shortest_augmenting_path()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G. For each node u in R, R.node[u][’excess’] represents the difference between flow into u and flow out
of u.

For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. Reacha-
bility to t using only edges (u, v) such that R[u][v][’flow’] < R[u][v][’capacity’] induces
a minimum s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import preflow_push

The functions that implement flow algorithms and output a residual network, such as this one, are not imported
to the base NetworkX namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
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>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = preflow_push(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value == R.graph['flow_value']
True
>>> # preflow_push also stores the maximum flow value
>>> # in the excess attribute of the sink node t
>>> flow_value == R.node['y']['excess']
True
>>> # For some problems, you might only want to compute a
>>> # maximum preflow.
>>> R = preflow_push(G, 'x', 'y', value_only=True)
>>> flow_value == R.graph['flow_value']
True
>>> flow_value == R.node['y']['excess']
True

4.22.5 Utils

build_residual_network(G, capacity) Build a residual network and initialize a zero flow.

build_residual_network

build_residual_network(G, capacity)
Build a residual network and initialize a zero flow.

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of
edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in
G.

For each edge (u, v) in R, R[u][v][’capacity’] is equal to the capacity of (u, v) in G if it exists in
G or zero otherwise. If the capacity is infinite, R[u][v][’capacity’] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in R.graph[’inf’]. For each edge (u,
v) in R, R[u][v][’flow’] represents the flow function of (u, v) and satisfies R[u][v][’flow’]
== -R[v][u][’flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[’flow_value’]. If
cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v][’flow’] <
R[u][v][’capacity’] induces a minimum s-t cut.

4.22.6 Network Simplex

network_simplex(G[, demand, capacity, weight]) Find a minimum cost flow satisfying all demands in digraph G.
min_cost_flow_cost(G[, demand, capacity, weight]) Find the cost of a minimum cost flow satisfying all demands in digraph G.
min_cost_flow(G[, demand, capacity, weight]) Return a minimum cost flow satisfying all demands in digraph G.
cost_of_flow(G, flowDict[, weight]) Compute the cost of the flow given by flowDict on graph G.
max_flow_min_cost(G, s, t[, capacity, weight]) Return a maximum (s, t)-flow of minimum cost.

274 Chapter 4. Algorithms



NetworkX Reference, Release 1.11

network_simplex

network_simplex(G, demand=’demand’, capacity=’capacity’, weight=’weight’)
Find a minimum cost flow satisfying all demands in digraph G.

This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive
some amount of flow. A negative demand means that the node wants to send flow, a positive demand means
that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is
equal to the demand of that node.

Parameters

• G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands
is to be found.

• demand (string) – Nodes of the graph G are expected to have an attribute demand that
indicates how much flow a node wants to send (negative demand) or receive (positive de-
mand). Note that the sum of the demands should be 0 otherwise the problem in not feasible.
If this attribute is not present, a node is considered to have 0 demand. Default value: ‘de-
mand’.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• weight (string) – Edges of the graph G are expected to have an attribute weight that
indicates the cost incurred by sending one unit of flow on that edge. If not present, the
weight is considered to be 0. Default value: ‘weight’.

Returns

• flowCost (integer, float) – Cost of a minimum cost flow satisfying all demands.

• flowDict (dictionary) – Dictionary of dictionaries keyed by nodes such that flowDict[u][v]
is the flow edge (u, v).

Raises

• NetworkXError – This exception is raised if the input graph is not directed, not con-
nected or is a multigraph.

• NetworkXUnfeasible – This exception is raised in the following situations:

– The sum of the demands is not zero. Then, there is no flow satisfying all demands.

– There is no flow satisfying all demand.

• NetworkXUnbounded – This exception is raised if the digraph G has a cycle of negative
cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded
below.

Notes

This algorithm is not guaranteed to work if edge weights are floating point numbers (overflows and roundoff
errors can cause problems).

See also:

cost_of_flow(), max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost()

4.22. Flows 275

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/string.html#module-string


NetworkX Reference, Release 1.11

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand=-5)
>>> G.add_node('d', demand=5)
>>> G.add_edge('a', 'b', weight=3, capacity=4)
>>> G.add_edge('a', 'c', weight=6, capacity=10)
>>> G.add_edge('b', 'd', weight=1, capacity=9)
>>> G.add_edge('c', 'd', weight=2, capacity=5)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between
two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then
run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying
positive flow will indicate the path.

>>> G=nx.DiGraph()
>>> G.add_weighted_edges_from([('s', 'u' ,10), ('s' ,'x' ,5),
... ('u', 'v' ,1), ('u' ,'x' ,2),
... ('v', 'y' ,1), ('x' ,'u' ,3),
... ('x', 'v' ,5), ('x' ,'y' ,2),
... ('y', 's' ,7), ('y' ,'v' ,6)])
>>> G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weight='weight')
True
>>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0])
[('s', 'x'), ('u', 'v'), ('x', 'u')]
>>> nx.shortest_path(G, 's', 'v', weight = 'weight')
['s', 'x', 'u', 'v']

It is possible to change the name of the attributes used for the algorithm.

>>> G = nx.DiGraph()
>>> G.add_node('p', spam=-4)
>>> G.add_node('q', spam=2)
>>> G.add_node('a', spam=-2)
>>> G.add_node('d', spam=-1)
>>> G.add_node('t', spam=2)
>>> G.add_node('w', spam=3)
>>> G.add_edge('p', 'q', cost=7, vacancies=5)
>>> G.add_edge('p', 'a', cost=1, vacancies=4)
>>> G.add_edge('q', 'd', cost=2, vacancies=3)
>>> G.add_edge('t', 'q', cost=1, vacancies=2)
>>> G.add_edge('a', 't', cost=2, vacancies=4)
>>> G.add_edge('d', 'w', cost=3, vacancies=4)
>>> G.add_edge('t', 'w', cost=4, vacancies=1)
>>> flowCost, flowDict = nx.network_simplex(G, demand='spam',
... capacity='vacancies',
... weight='cost')
>>> flowCost
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37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

References

min_cost_flow_cost

min_cost_flow_cost(G, demand=’demand’, capacity=’capacity’, weight=’weight’)
Find the cost of a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive
some amount of flow. A negative demand means that the node wants to send flow, a positive demand means
that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is
equal to the demand of that node.

Parameters

• G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands
is to be found.

• demand (string) – Nodes of the graph G are expected to have an attribute demand that
indicates how much flow a node wants to send (negative demand) or receive (positive de-
mand). Note that the sum of the demands should be 0 otherwise the problem in not feasible.
If this attribute is not present, a node is considered to have 0 demand. Default value: ‘de-
mand’.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• weight (string) – Edges of the graph G are expected to have an attribute weight that
indicates the cost incurred by sending one unit of flow on that edge. If not present, the
weight is considered to be 0. Default value: ‘weight’.

Returns flowCost – Cost of a minimum cost flow satisfying all demands.

Return type integer, float

Raises

• NetworkXError – This exception is raised if the input graph is not directed or not con-
nected.

• NetworkXUnfeasible – This exception is raised in the following situations:

– The sum of the demands is not zero. Then, there is no flow satisfying all demands.

– There is no flow satisfying all demand.

• NetworkXUnbounded – This exception is raised if the digraph G has a cycle of negative
cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded
below.

See also:

cost_of_flow(), max_flow_min_cost(), min_cost_flow(), network_simplex()
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Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost = nx.min_cost_flow_cost(G)
>>> flowCost
24

min_cost_flow

min_cost_flow(G, demand=’demand’, capacity=’capacity’, weight=’weight’)
Return a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive
some amount of flow. A negative demand means that the node wants to send flow, a positive demand means
that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is
equal to the demand of that node.

Parameters

• G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands
is to be found.

• demand (string) – Nodes of the graph G are expected to have an attribute demand that
indicates how much flow a node wants to send (negative demand) or receive (positive de-
mand). Note that the sum of the demands should be 0 otherwise the problem in not feasible.
If this attribute is not present, a node is considered to have 0 demand. Default value: ‘de-
mand’.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• weight (string) – Edges of the graph G are expected to have an attribute weight that
indicates the cost incurred by sending one unit of flow on that edge. If not present, the
weight is considered to be 0. Default value: ‘weight’.

Returns flowDict – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow
edge (u, v).

Return type dictionary

Raises

• NetworkXError – This exception is raised if the input graph is not directed or not con-
nected.

• NetworkXUnfeasible – This exception is raised in the following situations:

– The sum of the demands is not zero. Then, there is no flow satisfying all demands.

– There is no flow satisfying all demand.
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• NetworkXUnbounded – This exception is raised if the digraph G has a cycle of negative
cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded
below.

See also:

cost_of_flow(), max_flow_min_cost(), min_cost_flow_cost(), network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowDict = nx.min_cost_flow(G)

cost_of_flow

cost_of_flow(G, flowDict, weight=’weight’)
Compute the cost of the flow given by flowDict on graph G.

Note that this function does not check for the validity of the flow flowDict. This function will fail if the graph G
and the flow don’t have the same edge set.

Parameters

• G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands
is to be found.

• weight (string) – Edges of the graph G are expected to have an attribute weight that
indicates the cost incurred by sending one unit of flow on that edge. If not present, the
weight is considered to be 0. Default value: ‘weight’.

• flowDict (dictionary) – Dictionary of dictionaries keyed by nodes such that flow-
Dict[u][v] is the flow edge (u, v).

Returns cost – The total cost of the flow. This is given by the sum over all edges of the product of
the edge’s flow and the edge’s weight.

Return type Integer, float

See also:

max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost(), network_simplex()

max_flow_min_cost

max_flow_min_cost(G, s, t, capacity=’capacity’, weight=’weight’)
Return a maximum (s, t)-flow of minimum cost.

G is a digraph with edge costs and capacities. There is a source node s and a sink node t. This function finds a
maximum flow from s to t whose total cost is minimized.
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Parameters

• G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands
is to be found.

• s (node label) – Source of the flow.

• t (node label) – Destination of the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• weight (string) – Edges of the graph G are expected to have an attribute weight that
indicates the cost incurred by sending one unit of flow on that edge. If not present, the
weight is considered to be 0. Default value: ‘weight’.

Returns flowDict – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow
edge (u, v).

Return type dictionary

Raises

• NetworkXError – This exception is raised if the input graph is not directed or not con-
nected.

• NetworkXUnbounded – This exception is raised if there is an infinite capacity path from
s to t in G. In this case there is no maximum flow. This exception is also raised if the digraph
G has a cycle of negative cost and infinite capacity. Then, the cost of a flow is unbounded
below.

See also:

cost_of_flow(), min_cost_flow(), min_cost_flow_cost(), network_simplex()

Examples

>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2, {'capacity': 12, 'weight': 4}),
... (1, 3, {'capacity': 20, 'weight': 6}),
... (2, 3, {'capacity': 6, 'weight': -3}),
... (2, 6, {'capacity': 14, 'weight': 1}),
... (3, 4, {'weight': 9}),
... (3, 5, {'capacity': 10, 'weight': 5}),
... (4, 2, {'capacity': 19, 'weight': 13}),
... (4, 5, {'capacity': 4, 'weight': 0}),
... (5, 7, {'capacity': 28, 'weight': 2}),
... (6, 5, {'capacity': 11, 'weight': 1}),
... (6, 7, {'weight': 8}),
... (7, 4, {'capacity': 6, 'weight': 6})])
>>> mincostFlow = nx.max_flow_min_cost(G, 1, 7)
>>> mincost = nx.cost_of_flow(G, mincostFlow)
>>> mincost
373
>>> from networkx.algorithms.flow import maximum_flow
>>> maxFlow = maximum_flow(G, 1, 7)[1]
>>> nx.cost_of_flow(G, maxFlow) >= mincost
True
>>> mincostFlowValue = (sum((mincostFlow[u][7] for u in G.predecessors(7)))
... - sum((mincostFlow[7][v] for v in G.successors(7))))
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>>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7)
True

4.22.7 Capacity Scaling Minimum Cost Flow

capacity_scaling(G[, demand, capacity, ...]) Find a minimum cost flow satisfying all demands in digraph G.

capacity_scaling

capacity_scaling(G, demand=’demand’, capacity=’capacity’, weight=’weight’, heap=<class ‘net-
workx.utils.heaps.BinaryHeap’>)

Find a minimum cost flow satisfying all demands in digraph G.

This is a capacity scaling successive shortest augmenting path algorithm.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive
some amount of flow. A negative demand means that the node wants to send flow, a positive demand means
that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is
equal to the demand of that node.

Parameters

• G (NetworkX graph) – DiGraph or MultiDiGraph on which a minimum cost flow satis-
fying all demands is to be found.

• demand (string) – Nodes of the graph G are expected to have an attribute demand that
indicates how much flow a node wants to send (negative demand) or receive (positive de-
mand). Note that the sum of the demands should be 0 otherwise the problem in not feasible.
If this attribute is not present, a node is considered to have 0 demand. Default value: ‘de-
mand’.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this attribute is not present, the edge
is considered to have infinite capacity. Default value: ‘capacity’.

• weight (string) – Edges of the graph G are expected to have an attribute weight that
indicates the cost incurred by sending one unit of flow on that edge. If not present, the
weight is considered to be 0. Default value: ‘weight’.

• heap (class) – Type of heap to be used in the algorithm. It should be a subclass of
MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is recommeded over
PairingHeap for Python implementations without optimized attribute accesses (e.g.,
CPython) despite a slower asymptotic running time. For Python implementations with opti-
mized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default
value: BinaryHeap.

Returns

• flowCost (integer) – Cost of a minimum cost flow satisfying all demands.

• flowDict (dictionary) – If G is a DiGraph, a dict-of-dicts keyed by nodes such that flow-
Dict[u][v] is the flow edge (u, v). If G is a MultiDiGraph, a dict-of-dictsof-dicts keyed by
nodes so that flowDict[u][v][key] is the flow edge (u, v, key).

Raises
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• NetworkXError – This exception is raised if the input graph is not directed, not con-
nected.

• NetworkXUnfeasible – This exception is raised in the following situations:

– The sum of the demands is not zero. Then, there is no flow satisfying all demands.

– There is no flow satisfying all demand.

• NetworkXUnbounded – This exception is raised if the digraph G has a cycle of negative
cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded
below.

Notes

This algorithm does not work if edge weights are floating-point numbers.

See also:

network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost, flowDict = nx.capacity_scaling(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

It is possible to change the name of the attributes used for the algorithm.

>>> G = nx.DiGraph()
>>> G.add_node('p', spam = -4)
>>> G.add_node('q', spam = 2)
>>> G.add_node('a', spam = -2)
>>> G.add_node('d', spam = -1)
>>> G.add_node('t', spam = 2)
>>> G.add_node('w', spam = 3)
>>> G.add_edge('p', 'q', cost = 7, vacancies = 5)
>>> G.add_edge('p', 'a', cost = 1, vacancies = 4)
>>> G.add_edge('q', 'd', cost = 2, vacancies = 3)
>>> G.add_edge('t', 'q', cost = 1, vacancies = 2)
>>> G.add_edge('a', 't', cost = 2, vacancies = 4)
>>> G.add_edge('d', 'w', cost = 3, vacancies = 4)
>>> G.add_edge('t', 'w', cost = 4, vacancies = 1)
>>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam',
... capacity = 'vacancies',
... weight = 'cost')
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>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

4.23 Graphical degree sequence

Test sequences for graphiness.

is_graphical(sequence[, method]) Returns True if sequence is a valid degree sequence.
is_digraphical(in_sequence, out_sequence) Returns True if some directed graph can realize the in- and out-degree sequences.
is_multigraphical(sequence) Returns True if some multigraph can realize the sequence.
is_pseudographical(sequence) Returns True if some pseudograph can realize the sequence.
is_valid_degree_sequence_havel_hakimi(...) Returns True if deg_sequence can be realized by a simple graph.
is_valid_degree_sequence_erdos_gallai(...) Returns True if deg_sequence can be realized by a simple graph.

4.23.1 is_graphical

is_graphical(sequence, method=’eg’)
Returns True if sequence is a valid degree sequence.

A degree sequence is valid if some graph can realize it.

Parameters sequence (list or iterable container) – A sequence of integer node de-
grees

method [“eg” | “hh”] The method used to validate the degree sequence. “eg” corresponds to the Erdős-Gallai
algorithm, and “hh” to the Havel-Hakimi algorithm.

Returns valid – True if the sequence is a valid degree sequence and False if not.

Return type bool

Examples

>>> G = nx.path_graph(4)
>>> sequence = G.degree().values()
>>> nx.is_valid_degree_sequence(sequence)
True

References

Erdős-Gallai [EG1960], [choudum1986]

Havel-Hakimi [havel1955], [hakimi1962], [CL1996]

4.23.2 is_digraphical

is_digraphical(in_sequence, out_sequence)
Returns True if some directed graph can realize the in- and out-degree sequences.
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Parameters

• in_sequence (list or iterable container) – A sequence of integer node in-
degrees

• out_sequence (list or iterable container) – A sequence of integer node
out-degrees

Returns valid – True if in and out-sequences are digraphic False if not.

Return type bool

Notes

This algorithm is from Kleitman and Wang 1. The worst case runtime is O(s * log n) where s and n are the sum
and length of the sequences respectively.

References

4.23.3 is_multigraphical

is_multigraphical(sequence)
Returns True if some multigraph can realize the sequence.

Parameters deg_sequence (list) – A list of integers

Returns valid – True if deg_sequence is a multigraphic degree sequence and False if not.

Return type bool

Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

4.23.4 is_pseudographical

is_pseudographical(sequence)
Returns True if some pseudograph can realize the sequence.

Every nonnegative integer sequence with an even sum is pseudographical (see 1).

Parameters sequence (list or iterable container) – A sequence of integer node de-
grees

Returns valid – True if the sequence is a pseudographic degree sequence and False if not.

Return type bool

1 D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics,
6(1), pp. 79-88 (1973)

1 F. Boesch and F. Harary. “Line removal algorithms for graphs and their degree lists”, IEEE Trans. Circuits and Systems, CAS-23(12), pp.
778-782 (1976).
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Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

4.23.5 is_valid_degree_sequence_havel_hakimi

is_valid_degree_sequence_havel_hakimi(deg_sequence)
Returns True if deg_sequence can be realized by a simple graph.

The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is: O(s) where s is the sum of
the sequence.

Parameters deg_sequence (list) – A list of integers where each element specifies the degree
of a node in a graph.

Returns valid – True if deg_sequence is graphical and False if not.

Return type bool

Notes

The ZZ condition says that for the sequence d if

|𝑑| >=
(max(𝑑) + min(𝑑) + 1)2

4 * min(𝑑)

then d is graphical. This was shown in Theorem 6 in 1.

References

[havel1955], [hakimi1962], [CL1996]

4.23.6 is_valid_degree_sequence_erdos_gallai

is_valid_degree_sequence_erdos_gallai(deg_sequence)
Returns True if deg_sequence can be realized by a simple graph.

The validation is done using the Erdős-Gallai theorem [EG1960].

Parameters deg_sequence (list) – A list of integers

Returns valid – True if deg_sequence is graphical and False if not.

Return type bool

1 I.E. Zverovich and V.E. Zverovich. “Contributions to the theory of graphic sequences”, Discrete Mathematics, 105, pp. 292-303 (1992).
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Notes

This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is: O(n) where
n is the length of the sequence.

Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k
in the sequence,

𝑘∑︁
𝑖=1

𝑑𝑖 ≤ 𝑘(𝑘 − 1) +

𝑛∑︁
𝑗=𝑘+1

min(𝑑𝑖, 𝑘) = 𝑘(𝑛− 1) − (𝑘

𝑘−1∑︁
𝑗=0

𝑛𝑗 −
𝑘−1∑︁
𝑗=0

𝑗𝑛𝑗)

A strong index k is any index where 𝑑𝑘 ≥ 𝑘 and the value 𝑛𝑗 is the number of occurrences of j in d. The
maximal strong index is called the Durfee index.

This particular rearrangement comes from the proof of Theorem 3 in 2.

The ZZ condition says that for the sequence d if

|𝑑| >=
(max(𝑑) + min(𝑑) + 1)2

4 * min(𝑑)

then d is graphical. This was shown in Theorem 6 in 2.

References

[EG1960], [choudum1986]

4.24 Hierarchy

Flow Hierarchy.

flow_hierarchy(G[, weight]) Returns the flow hierarchy of a directed network.

4.24.1 flow_hierarchy

flow_hierarchy(G, weight=None)
Returns the flow hierarchy of a directed network.

Flow hierarchy is defined as the fraction of edges not participating in cycles in a directed graph 1.

Parameters

• G (DiGraph or MultiDiGraph) – A directed graph

• weight (key,optional (default=None)) – Attribute to use for node weights. If
None the weight defaults to 1.

Returns h – Flow heirarchy value

2 I.E. Zverovich and V.E. Zverovich. “Contributions to the theory of graphic sequences”, Discrete Mathematics, 105, pp. 292-303 (1992).
1 Luo, J.; Magee, C.L. (2011), Detecting evolving patterns of self-organizing networks by flow hierarchy measurement, Complexity, Volume 16

Issue 6 53-61. DOI: 10.1002/cplx.20368 http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf
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Return type float

Notes

The algorithm described in 1 computes the flow hierarchy through exponentiation of the adjacency matrix. This
function implements an alternative approach that finds strongly connected components. An edge is in a cycle if
and only if it is in a strongly connected component, which can be found in 𝑂(𝑚) time using Tarjan’s algorithm.

References

4.25 Hybrid

Provides functions for finding and testing for locally (𝑘, 𝑙)-connected graphs.

kl_connected_subgraph(G, k, l[, low_memory, ...]) Returns the maximum locally (𝑘, 𝑙)-connected subgraph of G.
is_kl_connected(G, k, l[, low_memory]) Returns True if and only if G is locally (𝑘, 𝑙)-connected.

4.25.1 kl_connected_subgraph

kl_connected_subgraph(G, k, l, low_memory=False, same_as_graph=False)
Returns the maximum locally (𝑘, 𝑙)-connected subgraph of G.

A graph is locally (𝑘, 𝑙)-connected if for each edge (𝑢, 𝑣) in the graph there are at least 𝑙 edge-disjoint paths of
length at most 𝑘 joining 𝑢 to 𝑣.

Parameters

• G (NetworkX graph) – The graph in which to find a maximum locally (𝑘, 𝑙)-connected
subgraph.

• k (integer) – The maximum length of paths to consider. A higher number means a looser
connectivity requirement.

• l (integer) – The number of edge-disjoint paths. A higher number means a stricter
connectivity requirement.

• low_memory (bool) – If this is True, this function uses an algorithm that uses slightly
more time but less memory.

• same_as_graph (bool) – If this is True then return a tuple of the form (H,
is_same), where H is the maximum locally (𝑘, 𝑙)-connected subgraph and is_same is a
Boolean representing whether G is locally (𝑘, 𝑙)-connected (and hence, whether H is simply
a copy of the input graph G).

Returns If same_as_graph is True, then this function returns a two-tuple as described above.
Otherwise, it returns only the maximum locally (𝑘, 𝑙)-connected subgraph.

Return type NetworkX graph or two-tuple

See also:

is_kl_connected()
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References

4.25.2 is_kl_connected

is_kl_connected(G, k, l, low_memory=False)
Returns True if and only if G is locally (𝑘, 𝑙)-connected.

A graph is locally (𝑘, 𝑙)-connected if for each edge (𝑢, 𝑣) in the graph there are at least 𝑙 edge-disjoint paths of
length at most 𝑘 joining 𝑢 to 𝑣.

Parameters

• G (NetworkX graph) – The graph to test for local (𝑘, 𝑙)-connectedness.

• k (integer) – The maximum length of paths to consider. A higher number means a looser
connectivity requirement.

• l (integer) – The number of edge-disjoint paths. A higher number means a stricter
connectivity requirement.

• low_memory (bool) – If this is True, this function uses an algorithm that uses slightly
more time but less memory.

Returns Whether the graph is locally (𝑘, 𝑙)-connected subgraph.

Return type bool

See also:

kl_connected_subgraph()

References

4.26 Isolates

Functions for identifying isolate (degree zero) nodes.

is_isolate(G, n) Determine of node n is an isolate (degree zero).
isolates(G) Return list of isolates in the graph.

4.26.1 is_isolate

is_isolate(G, n)
Determine of node n is an isolate (degree zero).

Parameters

• G (graph) – A networkx graph

• n (node) – A node in G

Returns isolate – True if n has no neighbors, False otherwise.

Return type bool
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Examples

>>> G=nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.is_isolate(G,2)
False
>>> nx.is_isolate(G,3)
True

4.26.2 isolates

isolates(G)
Return list of isolates in the graph.

Isolates are nodes with no neighbors (degree zero).

Parameters G (graph) – A networkx graph

Returns isolates – List of isolate nodes.

Return type list

Examples

>>> G = nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.isolates(G)
[3]

To remove all isolates in the graph use >>> G.remove_nodes_from(nx.isolates(G)) >>> G.nodes() [1, 2]

For digraphs isolates have zero in-degree and zero out_degre >>> G = nx.DiGraph([(0,1),(1,2)]) >>>
G.add_node(3) >>> nx.isolates(G) [3]

4.27 Isomorphism

is_isomorphic(G1, G2[, node_match, edge_match]) Returns True if the graphs G1 and G2 are isomorphic and False otherwise.
could_be_isomorphic(G1, G2) Returns False if graphs are definitely not isomorphic.
fast_could_be_isomorphic(G1, G2) Returns False if graphs are definitely not isomorphic.
faster_could_be_isomorphic(G1, G2) Returns False if graphs are definitely not isomorphic.

4.27.1 is_isomorphic

is_isomorphic(G1, G2, node_match=None, edge_match=None)
Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

Parameters

• G2 (G1,) – The two graphs G1 and G2 must be the same type.

• node_match (callable) – A function that returns True if node n1 in G1 and n2 in G2
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should be considered equal during the isomorphism test. If node_match is not specified then
node attributes are not considered.

The function will be called like

node_match(G1.node[n1], G2.node[n2]).

That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs.

• edge_match (callable) – A function that returns True if the edge attribute dictionary
for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during
the isomorphism test. If edge_match is not specified then edge attributes are not considered.

The function will be called like

edge_match(G1[u1][v1], G2[u2][v2]).

That is, the function will receive the edge attribute dictionaries of the edges under consider-
ation.

Notes

Uses the vf2 algorithm 1.

Examples

>>> import networkx.algorithms.isomorphism as iso

For digraphs G1 and G2, using ‘weight’ edge attribute (default: 1)

>>> G1 = nx.DiGraph()
>>> G2 = nx.DiGraph()
>>> G1.add_path([1,2,3,4],weight=1)
>>> G2.add_path([10,20,30,40],weight=2)
>>> em = iso.numerical_edge_match('weight', 1)
>>> nx.is_isomorphic(G1, G2) # no weights considered
True
>>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights
False

For multidigraphs G1 and G2, using ‘fill’ node attribute (default: ‘’)

>>> G1 = nx.MultiDiGraph()
>>> G2 = nx.MultiDiGraph()
>>> G1.add_nodes_from([1,2,3],fill='red')
>>> G2.add_nodes_from([10,20,30,40],fill='red')
>>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
>>> G2.add_path([10,20,30,40],weight=3)
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, node_match=nm)
True

For multidigraphs G1 and G2, using ‘weight’ edge attribute (default: 7)

1 L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “An Improved Algorithm for Matching Large Graphs”, 3rd IAPR-TC15 Workshop on
Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

290 Chapter 4. Algorithms

http://docs.python.org/library/functions.html#callable
http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf


NetworkX Reference, Release 1.11

>>> G1.add_edge(1,2, weight=7)
>>> G2.add_edge(10,20)
>>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6)
>>> nx.is_isomorphic(G1, G2, edge_match=em)
True

For multigraphs G1 and G2, using ‘weight’ and ‘linewidth’ edge attributes with default values 7 and 2.5. Also
using ‘fill’ node attribute with default value ‘red’.

>>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5])
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
True

See also:

numerical_node_match(), numerical_edge_match(), numerical_multiedge_match(),
categorical_node_match(), categorical_edge_match(), categorical_multiedge_match()

References

4.27.2 could_be_isomorphic

could_be_isomorphic(G1, G2)
Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism.

Parameters G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree, triangle, and number of cliques sequences.

4.27.3 fast_could_be_isomorphic

fast_could_be_isomorphic(G1, G2)
Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

Parameters G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree and triangle sequences.

4.27.4 faster_could_be_isomorphic

faster_could_be_isomorphic(G1, G2)
Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

Parameters G2 (G1,) – The two graphs G1 and G2 must be the same type.
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Notes

Checks for matching degree sequences.

4.27.5 Advanced Interface to VF2 Algorithm

VF2 Algorithm

VF2 Algorithm

An implementation of VF2 algorithm for graph ismorphism testing.

The simplest interface to use this module is to call networkx.is_isomorphic().

Introduction The GraphMatcher and DiGraphMatcher are responsible for matching graphs or directed graphs in a
predetermined manner. This usually means a check for an isomorphism, though other checks are also possible. For
example, a subgraph of one graph can be checked for isomorphism to a second graph.

Matching is done via syntactic feasibility. It is also possible to check for semantic feasibility. Feasibility, then, is
defined as the logical AND of the two functions.

To include a semantic check, the (Di)GraphMatcher class should be subclassed, and the semantic_feasibility() function
should be redefined. By default, the semantic feasibility function always returns True. The effect of this is that
semantics are not considered in the matching of G1 and G2.

Examples

Suppose G1 and G2 are isomorphic graphs. Verification is as follows:

>>> from networkx.algorithms import isomorphism
>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> GM = isomorphism.GraphMatcher(G1,G2)
>>> GM.is_isomorphic()
True

GM.mapping stores the isomorphism mapping from G1 to G2.

>>> GM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}

Suppose G1 and G2 are isomorphic directed graphs graphs. Verification is as follows:

>>> G1 = nx.path_graph(4, create_using=nx.DiGraph())
>>> G2 = nx.path_graph(4, create_using=nx.DiGraph())
>>> DiGM = isomorphism.DiGraphMatcher(G1,G2)
>>> DiGM.is_isomorphic()
True

DiGM.mapping stores the isomorphism mapping from G1 to G2.

>>> DiGM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}
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Subgraph Isomorphism Graph theory literature can be ambiguious about the meaning of the above statement, and
we seek to clarify it now.

In the VF2 literature, a mapping M is said to be a graph-subgraph isomorphism iff M is an isomorphism between G2
and a subgraph of G1. Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say that a subgraph of G1 is
isomorphic to G2.

Other literature uses the phrase ‘subgraph isomorphic’ as in ‘G1 does not have a subgraph isomorphic to G2’. Another
use is as an in adverb for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic is to say that a subgraph
of G1 is isomorphic to G2.

Finally, the term ‘subgraph’ can have multiple meanings. In this context, ‘subgraph’ always means a ‘node-induced
subgraph’. Edge-induced subgraph isomorphisms are not directly supported, but one should be able to perform the
check by making use of nx.line_graph(). For subgraphs which are not induced, the term ‘monomorphism’ is preferred
over ‘isomorphism’. Currently, it is not possible to check for monomorphisms.

Let G=(N,E) be a graph with a set of nodes N and set of edges E.

If G’=(N’,E’) is a subgraph, then: N’ is a subset of N E’ is a subset of E

If G’=(N’,E’) is a node-induced subgraph, then: N’ is a subset of N E’ is the subset of edges in E relating nodes in
N’

If G’=(N’,E’) is an edge-induced subgrpah, then: N’ is the subset of nodes in N related by edges in E’ E’ is a subset
of E

References

[1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, “A (Sub)Graph Isomorphism Algorithm for
Matching Large Graphs”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp.
1367-1372, Oct., 2004. http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf

[2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “An Improved Algorithm for Matching Large Graphs”, 3rd
IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001.
http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

See also:

syntactic_feasibliity, semantic_feasibility

Notes

Modified to handle undirected graphs. Modified to handle multiple edges.

In general, this problem is NP-Complete.

Graph Matcher

GraphMatcher.__init__(G1, G2[, node_match, ...]) Initialize graph matcher.
GraphMatcher.initialize() Reinitializes the state of the algorithm.
GraphMatcher.is_isomorphic() Returns True if G1 and G2 are isomorphic graphs.
GraphMatcher.subgraph_is_isomorphic() Returns True if a subgraph of G1 is isomorphic to G2.
GraphMatcher.isomorphisms_iter() Generator over isomorphisms between G1 and G2.
GraphMatcher.subgraph_isomorphisms_iter() Generator over isomorphisms between a subgraph of G1 and G2.
GraphMatcher.candidate_pairs_iter() Iterator over candidate pairs of nodes in G1 and G2.

Continued on next page
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Table 4.72 – continued from previous page
GraphMatcher.match() Extends the isomorphism mapping.
GraphMatcher.semantic_feasibility(G1_node, ...) Returns True if mapping G1_node to G2_node is semantically feasible.
GraphMatcher.syntactic_feasibility(G1_node, ...) Returns True if adding (G1_node, G2_node) is syntactically feasible.

__init__
GraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)

Initialize graph matcher.

Parameters

• G2 (G1,) – The graphs to be tested.

• node_match (callable) – A function that returns True iff node n1 in G1 and n2 in G2
should be considered equal during the isomorphism test. The function will be called like:

node_match(G1.node[n1], G2.node[n2])

That is, the function will receive the node attribute dictionaries of the nodes under consider-
ation. If None, then no attributes are considered when testing for an isomorphism.

• edge_match (callable) – A function that returns True iff the edge attribute dictionary
for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during
the isomorphism test. The function will be called like:

edge_match(G1[u1][v1], G2[u2][v2])

That is, the function will receive the edge attribute dictionaries of the edges under consider-
ation. If None, then no attributes are considered when testing for an isomorphism.

initialize
GraphMatcher.initialize()

Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a
redefinition is not necessary.

is_isomorphic
GraphMatcher.is_isomorphic()

Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isomorphic
GraphMatcher.subgraph_is_isomorphic()

Returns True if a subgraph of G1 is isomorphic to G2.

isomorphisms_iter
GraphMatcher.isomorphisms_iter()

Generator over isomorphisms between G1 and G2.

subgraph_isomorphisms_iter
GraphMatcher.subgraph_isomorphisms_iter()

Generator over isomorphisms between a subgraph of G1 and G2.

294 Chapter 4. Algorithms

http://docs.python.org/library/functions.html#callable
http://docs.python.org/library/functions.html#callable


NetworkX Reference, Release 1.11

candidate_pairs_iter
GraphMatcher.candidate_pairs_iter()

Iterator over candidate pairs of nodes in G1 and G2.

match
GraphMatcher.match()

Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

semantic_feasibility
GraphMatcher.semantic_feasibility(G1_node, G2_node)

Returns True if mapping G1_node to G2_node is semantically feasible.

syntactic_feasibility
GraphMatcher.syntactic_feasibility(G1_node, G2_node)

Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an
isomorphism to be found.

DiGraph Matcher

DiGraphMatcher.__init__(G1, G2[, ...]) Initialize graph matcher.
DiGraphMatcher.initialize() Reinitializes the state of the algorithm.
DiGraphMatcher.is_isomorphic() Returns True if G1 and G2 are isomorphic graphs.
DiGraphMatcher.subgraph_is_isomorphic() Returns True if a subgraph of G1 is isomorphic to G2.
DiGraphMatcher.isomorphisms_iter() Generator over isomorphisms between G1 and G2.
DiGraphMatcher.subgraph_isomorphisms_iter() Generator over isomorphisms between a subgraph of G1 and G2.
DiGraphMatcher.candidate_pairs_iter() Iterator over candidate pairs of nodes in G1 and G2.
DiGraphMatcher.match() Extends the isomorphism mapping.
DiGraphMatcher.semantic_feasibility(G1_node, ...) Returns True if mapping G1_node to G2_node is semantically feasible.
DiGraphMatcher.syntactic_feasibility(...) Returns True if adding (G1_node, G2_node) is syntactically feasible.

__init__
DiGraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)

Initialize graph matcher.

Parameters

• G2 (G1,) – The graphs to be tested.

• node_match (callable) – A function that returns True iff node n1 in G1 and n2 in G2
should be considered equal during the isomorphism test. The function will be called like:

node_match(G1.node[n1], G2.node[n2])

That is, the function will receive the node attribute dictionaries of the nodes under consider-
ation. If None, then no attributes are considered when testing for an isomorphism.

4.27. Isomorphism 295

http://docs.python.org/library/functions.html#callable


NetworkX Reference, Release 1.11

• edge_match (callable) – A function that returns True iff the edge attribute dictionary
for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during
the isomorphism test. The function will be called like:

edge_match(G1[u1][v1], G2[u2][v2])

That is, the function will receive the edge attribute dictionaries of the edges under consider-
ation. If None, then no attributes are considered when testing for an isomorphism.

initialize
DiGraphMatcher.initialize()

Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher,
a redefinition is not necessary.

is_isomorphic
DiGraphMatcher.is_isomorphic()

Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isomorphic
DiGraphMatcher.subgraph_is_isomorphic()

Returns True if a subgraph of G1 is isomorphic to G2.

isomorphisms_iter
DiGraphMatcher.isomorphisms_iter()

Generator over isomorphisms between G1 and G2.

subgraph_isomorphisms_iter
DiGraphMatcher.subgraph_isomorphisms_iter()

Generator over isomorphisms between a subgraph of G1 and G2.

candidate_pairs_iter
DiGraphMatcher.candidate_pairs_iter()

Iterator over candidate pairs of nodes in G1 and G2.

match
DiGraphMatcher.match()

Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

semantic_feasibility
DiGraphMatcher.semantic_feasibility(G1_node, G2_node)

Returns True if mapping G1_node to G2_node is semantically feasible.
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syntactic_feasibility
DiGraphMatcher.syntactic_feasibility(G1_node, G2_node)

Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an
isomorphism to be found.

Match helpers

categorical_node_match(attr, default) Returns a comparison function for a categorical node attribute.
categorical_edge_match(attr, default) Returns a comparison function for a categorical edge attribute.
categorical_multiedge_match(attr, default) Returns a comparison function for a categorical edge attribute.
numerical_node_match(attr, default[, rtol, atol]) Returns a comparison function for a numerical node attribute.
numerical_edge_match(attr, default[, rtol, atol]) Returns a comparison function for a numerical edge attribute.
numerical_multiedge_match(attr, default[, ...]) Returns a comparison function for a numerical edge attribute.
generic_node_match(attr, default, op) Returns a comparison function for a generic attribute.
generic_edge_match(attr, default, op) Returns a comparison function for a generic attribute.
generic_multiedge_match(attr, default, op) Returns a comparison function for a generic attribute.

categorical_node_match
categorical_node_match(attr, default)

Returns a comparison function for a categorical node attribute.

The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a
set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters

• attr (string | list) – The categorical node attribute to compare, or a list of categor-
ical node attributes to compare.

• default (value | list) – The default value for the categorical node attribute, or a
list of default values for the categorical node attributes.

Returns match – The customized, categorical 𝑛𝑜𝑑𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_node_match('size', 1)
>>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2])

categorical_edge_match
categorical_edge_match(attr, default)

Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a
set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters
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• attr (string | list) – The categorical edge attribute to compare, or a list of categor-
ical edge attributes to compare.

• default (value | list) – The default value for the categorical edge attribute, or a
list of default values for the categorical edge attributes.

Returns match – The customized, categorical 𝑒𝑑𝑔𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_edge_match('size', 1)
>>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2])

categorical_multiedge_match
categorical_multiedge_match(attr, default)

Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the == operator since they are placed into a
set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters

• attr (string | list) – The categorical edge attribute to compare, or a list of categor-
ical edge attributes to compare.

• default (value | list) – The default value for the categorical edge attribute, or a
list of default values for the categorical edge attributes.

Returns match – The customized, categorical 𝑒𝑑𝑔𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_multiedge_match('size', 1)
>>> nm = iso.categorical_multiedge_match(['color', 'size'], ['red', 2])

numerical_node_match
numerical_node_match(attr, default, rtol=1e-05, atol=1e-08)

Returns a comparison function for a numerical node attribute.

The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the
same within some tolerance, then the constructed function returns True.

Parameters

• attr (string | list) – The numerical node attribute to compare, or a list of numerical
node attributes to compare.

• default (value | list) – The default value for the numerical node attribute, or a list
of default values for the numerical node attributes.

• rtol (float) – The relative error tolerance.
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• atol (float) – The absolute error tolerance.

Returns match – The customized, numerical 𝑛𝑜𝑑𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_node_match('weight', 1.0)
>>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5])

numerical_edge_match
numerical_edge_match(attr, default, rtol=1e-05, atol=1e-08)

Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the
same within some tolerance, then the constructed function returns True.

Parameters

• attr (string | list) – The numerical edge attribute to compare, or a list of numerical
edge attributes to compare.

• default (value | list) – The default value for the numerical edge attribute, or a list
of default values for the numerical edge attributes.

• rtol (float) – The relative error tolerance.

• atol (float) – The absolute error tolerance.

Returns match – The customized, numerical 𝑒𝑑𝑔𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_edge_match('weight', 1.0)
>>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5])

numerical_multiedge_match
numerical_multiedge_match(attr, default, rtol=1e-05, atol=1e-08)

Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the
same within some tolerance, then the constructed function returns True.

Parameters

• attr (string | list) – The numerical edge attribute to compare, or a list of numerical
edge attributes to compare.

• default (value | list) – The default value for the numerical edge attribute, or a list
of default values for the numerical edge attributes.

• rtol (float) – The relative error tolerance.
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• atol (float) – The absolute error tolerance.

Returns match – The customized, numerical 𝑒𝑑𝑔𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_multiedge_match('weight', 1.0)
>>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5])

generic_node_match
generic_node_match(attr, default, op)

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the
constructed function returns True.

Parameters

• attr (string | list) – The node attribute to compare, or a list of node attributes to
compare.

• default (value | list) – The default value for the node attribute, or a list of default
values for the node attributes.

• op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

Returns match – The customized, generic 𝑛𝑜𝑑𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq])

generic_edge_match
generic_edge_match(attr, default, op)

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the
constructed function returns True.

Parameters

• attr (string | list) – The edge attribute to compare, or a list of edge attributes to
compare.

• default (value | list) – The default value for the edge attribute, or a list of default
values for the edge attributes.
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• op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

Returns match – The customized, generic 𝑒𝑑𝑔𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_edge_match
>>> nm = generic_edge_match('weight', 1.0, close)
>>> nm = generic_edge_match('color', 'red', eq)
>>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq])

generic_multiedge_match
generic_multiedge_match(attr, default, op)

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the
constructed function returns True. Potentially, the constructed edge_match function can be slow since it must
verify that no isomorphism exists between the multiedges before it returns False.

Parameters

• attr (string | list) – The edge attribute to compare, or a list of node attributes to
compare.

• default (value | list) – The default value for the edge attribute, or a list of default
values for the dgeattributes.

• op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

Returns match – The customized, generic 𝑒𝑑𝑔𝑒𝑚𝑎𝑡𝑐ℎ function.

Return type function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'],
... [1.0, 'red'],
... [close, eq])
...
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4.28 Link Analysis

4.28.1 PageRank

PageRank analysis of graph structure.

pagerank(G[, alpha, personalization, ...]) Return the PageRank of the nodes in the graph.
pagerank_numpy(G[, alpha, personalization, ...]) Return the PageRank of the nodes in the graph.
pagerank_scipy(G[, alpha, personalization, ...]) Return the PageRank of the nodes in the graph.
google_matrix(G[, alpha, personalization, ...]) Return the Google matrix of the graph.

pagerank

pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight=’weight’,
dangling=None)

Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was
originally designed as an algorithm to rank web pages.

Parameters

• G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed graph
with two directed edges for each undirected edge.

• alpha (float, optional) – Damping parameter for PageRank, default=0.85.

• personalization (dict, optional) – The “personalization vector” consisting of
a dictionary with a key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

• max_iter (integer, optional) – Maximum number of iterations in power method
eigenvalue solver.

• tol (float, optional) – Error tolerance used to check convergence in power method
solver.

• nstart (dictionary, optional) – Starting value of PageRank iteration for each
node.

• weight (key, optional) – Edge data key to use as weight. If None weights are set to
1.

• dangling (dict, optional) – The outedges to be assigned to any “dangling” nodes,
i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given outedges according
to the personalization vector (uniform if not specified). This must be selected to result in an
irreducible transition matrix (see notes under google_matrix). It may be common to have
the dangling dict to be the same as the personalization dict.

Returns pagerank – Dictionary of nodes with PageRank as value

Return type dictionary
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Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank(G, alpha=0.9)

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph
is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges.

See also:

pagerank_numpy(), pagerank_scipy(), google_matrix()

References

pagerank_numpy

pagerank_numpy(G, alpha=0.85, personalization=None, weight=’weight’, dangling=None)
Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was
originally designed as an algorithm to rank web pages.

Parameters

• G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed graph
with two directed edges for each undirected edge.

• alpha (float, optional) – Damping parameter for PageRank, default=0.85.

• personalization (dict, optional) – The “personalization vector” consisting of
a dictionary with a key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

• weight (key, optional) – Edge data key to use as weight. If None weights are set to
1.

• dangling (dict, optional) – The outedges to be assigned to any “dangling” nodes,
i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given outedges according
to the personalization vector (uniform if not specified) This must be selected to result in an
irreducible transition matrix (see notes under google_matrix). It may be common to have
the dangling dict to be the same as the personalization dict.

Returns pagerank – Dictionary of nodes with PageRank as value.

Return type dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_numpy(G, alpha=0.9)
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Notes

The eigenvector calculation uses NumPy’s interface to the LAPACK eigenvalue solvers. This will be the fastest
and most accurate for small graphs.

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be
the sum of all edge weights between those nodes.

See also:

pagerank(), pagerank_scipy(), google_matrix()

References

pagerank_scipy

pagerank_scipy(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, weight=’weight’, dan-
gling=None)

Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was
originally designed as an algorithm to rank web pages.

Parameters

• G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed graph
with two directed edges for each undirected edge.

• alpha (float, optional) – Damping parameter for PageRank, default=0.85.

• personalization (dict, optional) – The “personalization vector” consisting of
a dictionary with a key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

• max_iter (integer, optional) – Maximum number of iterations in power method
eigenvalue solver.

• tol (float, optional) – Error tolerance used to check convergence in power method
solver.

• weight (key, optional) – Edge data key to use as weight. If None weights are set to
1.

• dangling (dict, optional) – The outedges to be assigned to any “dangling” nodes,
i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given outedges according
to the personalization vector (uniform if not specified) This must be selected to result in an
irreducible transition matrix (see notes under google_matrix). It may be common to have
the dangling dict to be the same as the personalization dict.

Returns pagerank – Dictionary of nodes with PageRank as value

Return type dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_scipy(G, alpha=0.9)
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Notes

The eigenvector calculation uses power iteration with a SciPy sparse matrix representation.

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be
the sum of all edge weights between those nodes.

See also:

pagerank(), pagerank_numpy(), google_matrix()

References

google_matrix

google_matrix(G, alpha=0.85, personalization=None, nodelist=None, weight=’weight’, dan-
gling=None)

Return the Google matrix of the graph.

Parameters

• G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed graph
with two directed edges for each undirected edge.

• alpha (float) – The damping factor.

• personalization (dict, optional) – The “personalization vector” consisting of
a dictionary with a key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

• weight (key, optional) – Edge data key to use as weight. If None weights are set to
1.

• dangling (dict, optional) – The outedges to be assigned to any “dangling” nodes,
i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given outedges according
to the personalization vector (uniform if not specified) This must be selected to result in an
irreducible transition matrix (see notes below). It may be common to have the dangling dict
to be the same as the personalization dict.

Returns A – Google matrix of the graph

Return type NumPy matrix

Notes

The matrix returned represents the transition matrix that describes the Markov chain used in PageRank. For
PageRank to converge to a unique solution (i.e., a unique stationary distribution in a Markov chain), the transition
matrix must be irreducible. In other words, it must be that there exists a path between every pair of nodes in the
graph, or else there is the potential of “rank sinks.”

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be
the sum of all edge weights between those nodes.

See also:
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pagerank(), pagerank_numpy(), pagerank_scipy()

4.28.2 Hits

Hubs and authorities analysis of graph structure.

hits(G[, max_iter, tol, nstart, normalized]) Return HITS hubs and authorities values for nodes.
hits_numpy(G[, normalized]) Return HITS hubs and authorities values for nodes.
hits_scipy(G[, max_iter, tol, normalized]) Return HITS hubs and authorities values for nodes.
hub_matrix(G[, nodelist]) Return the HITS hub matrix.
authority_matrix(G[, nodelist]) Return the HITS authority matrix.

hits

hits(G, max_iter=100, tol=1e-08, nstart=None, normalized=True)
Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the
incoming links. Hubs estimates the node value based on outgoing links.

Parameters

• G (graph) – A NetworkX graph

• max_iter (interger, optional) – Maximum number of iterations in power
method.

• tol (float, optional) – Error tolerance used to check convergence in power method
iteration.

• nstart (dictionary, optional) – Starting value of each node for power method
iteration.

• normalized (bool (default=True)) – Normalize results by the sum of all of the
values.

Returns (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

Return type two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is
directed and will execute on undirected graphs.
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References

hits_numpy

hits_numpy(G, normalized=True)
Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the
incoming links. Hubs estimates the node value based on outgoing links.

Parameters

• G (graph) – A NetworkX graph

• normalized (bool (default=True)) – Normalize results by the sum of all of the
values.

Returns (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

Return type two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

The eigenvector calculation uses NumPy’s interface to LAPACK.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is
directed and will execute on undirected graphs.

References

hits_scipy

hits_scipy(G, max_iter=100, tol=1e-06, normalized=True)
Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the
incoming links. Hubs estimates the node value based on outgoing links.

Parameters

• G (graph) – A NetworkX graph

• max_iter (interger, optional) – Maximum number of iterations in power
method.

• tol (float, optional) – Error tolerance used to check convergence in power method
iteration.

• nstart (dictionary, optional) – Starting value of each node for power method
iteration.
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• normalized (bool (default=True)) – Normalize results by the sum of all of the
values.

Returns (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

Return type two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

This implementation uses SciPy sparse matrices.

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is
directed and will execute on undirected graphs.

References

hub_matrix

hub_matrix(G, nodelist=None)
Return the HITS hub matrix.

authority_matrix

authority_matrix(G, nodelist=None)
Return the HITS authority matrix.

4.29 Link Prediction

Link prediction algorithms.

resource_allocation_index(G[, ebunch]) Compute the resource allocation index of all node pairs in ebunch.
jaccard_coefficient(G[, ebunch]) Compute the Jaccard coefficient of all node pairs in ebunch.
adamic_adar_index(G[, ebunch]) Compute the Adamic-Adar index of all node pairs in ebunch.
preferential_attachment(G[, ebunch]) Compute the preferential attachment score of all node pairs in ebunch.
cn_soundarajan_hopcroft(G[, ebunch, community]) Count the number of common neighbors of all node pairs in ebunch using community information.
ra_index_soundarajan_hopcroft(G[, ebunch, ...]) Compute the resource allocation index of all node pairs in ebunch using community information.
within_inter_cluster(G[, ebunch, delta, ...]) Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.
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4.29.1 resource_allocation_index

resource_allocation_index(G, ebunch=None)
Compute the resource allocation index of all node pairs in ebunch.

Resource allocation index of 𝑢 and 𝑣 is defined as∑︁
𝑤∈Γ(𝑢)∩Γ(𝑣)

1

|Γ(𝑤)|

where Γ(𝑢) denotes the set of neighbors of 𝑢.

Parameters

• G (graph) – A NetworkX undirected graph.

• ebunch (iterable of node pairs, optional (default = None)) – Re-
source allocation index will be computed for each pair of nodes given in the iterable. The
pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is
None then all non-existent edges in the graph will be used. Default value: None.

Returns piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is
their resource allocation index.

Return type iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.75000000'
'(2, 3) -> 0.75000000'

References

4.29.2 jaccard_coefficient

jaccard_coefficient(G, ebunch=None)
Compute the Jaccard coefficient of all node pairs in ebunch.

Jaccard coefficient of nodes 𝑢 and 𝑣 is defined as

|Γ(𝑢) ∩ Γ(𝑣)|
|Γ(𝑢) ∪ Γ(𝑣)|

where Γ(𝑢) denotes the set of neighbors of 𝑢.

Parameters

• G (graph) – A NetworkX undirected graph.

• ebunch (iterable of node pairs, optional (default = None)) – Jac-
card coefficient will be computed for each pair of nodes given in the iterable. The pairs must
be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used. Default value: None.
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Returns piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is
their Jaccard coefficient.

Return type iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.60000000'
'(2, 3) -> 0.60000000'

References

4.29.3 adamic_adar_index

adamic_adar_index(G, ebunch=None)
Compute the Adamic-Adar index of all node pairs in ebunch.

Adamic-Adar index of 𝑢 and 𝑣 is defined as ∑︁
𝑤∈Γ(𝑢)∩Γ(𝑣)

1

log |Γ(𝑤)|

where Γ(𝑢) denotes the set of neighbors of 𝑢.

Parameters

• G (graph) – NetworkX undirected graph.

• ebunch (iterable of node pairs, optional (default = None)) –
Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs
must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None
then all non-existent edges in the graph will be used. Default value: None.

Returns piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is
their Adamic-Adar index.

Return type iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 2.16404256'
'(2, 3) -> 2.16404256'
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References

4.29.4 preferential_attachment

preferential_attachment(G, ebunch=None)
Compute the preferential attachment score of all node pairs in ebunch.

Preferential attachment score of 𝑢 and 𝑣 is defined as

|Γ(𝑢)||Γ(𝑣)|

where Γ(𝑢) denotes the set of neighbors of 𝑢.

Parameters

• G (graph) – NetworkX undirected graph.

• ebunch (iterable of node pairs, optional (default = None)) –
Preferential attachment score will be computed for each pair of nodes given in the iterable.
The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch
is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is
their preferential attachment score.

Return type iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
...
'(0, 1) -> 16'
'(2, 3) -> 16'

References

4.29.5 cn_soundarajan_hopcroft

cn_soundarajan_hopcroft(G, ebunch=None, community=’community’)

Count the number of common neighbors of all node pairs in ebunch using community information.

For two nodes 𝑢 and 𝑣, this function computes the number of common neighbors and bonus one for each
common neighbor belonging to the same community as 𝑢 and 𝑣. Mathematically,

|Γ(𝑢) ∩ Γ(𝑣)| +
∑︁

𝑤∈Γ(𝑢)∩Γ(𝑣)

𝑓(𝑤)

where 𝑓(𝑤) equals 1 if 𝑤 belongs to the same community as 𝑢 and 𝑣 or 0 otherwise and Γ(𝑢) denotes the set of
neighbors of 𝑢.

Parameters

• G (graph) – A NetworkX undirected graph.
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• ebunch (iterable of node pairs, optional (default = None)) – The
score will be computed for each pair of nodes given in the iterable. The pairs must be
given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used. Default value: None.

• community (string, optional (default = ’community’)) – Nodes at-
tribute name containing the community information. G[u][community] identifies which
community u belongs to. Each node belongs to at most one community. Default value:
‘community’.

Returns piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is
their score.

Return type iterator

Examples

>>> import networkx as nx
>>> G = nx.path_graph(3)
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 0
>>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
...
'(0, 2) -> 2'

References

4.29.6 ra_index_soundarajan_hopcroft

ra_index_soundarajan_hopcroft(G, ebunch=None, community=’community’)
Compute the resource allocation index of all node pairs in ebunch using community information.

For two nodes 𝑢 and 𝑣, this function computes the resource allocation index considering only common neighbors
belonging to the same community as 𝑢 and 𝑣. Mathematically,∑︁

𝑤∈Γ(𝑢)∩Γ(𝑣)

𝑓(𝑤)

|Γ(𝑤)|

where 𝑓(𝑤) equals 1 if 𝑤 belongs to the same community as 𝑢 and 𝑣 or 0 otherwise and Γ(𝑢) denotes the set of
neighbors of 𝑢.

Parameters

• G (graph) – A NetworkX undirected graph.

• ebunch (iterable of node pairs, optional (default = None)) – The
score will be computed for each pair of nodes given in the iterable. The pairs must be
given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used. Default value: None.

• community (string, optional (default = ’community’)) – Nodes at-
tribute name containing the community information. G[u][community] identifies which
community u belongs to. Each node belongs to at most one community. Default value:
‘community’.
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Returns piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is
their score.

Return type iterator

Examples

>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 1
>>> G.node[3]['community'] = 0
>>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 3) -> 0.50000000'

References

4.29.7 within_inter_cluster

within_inter_cluster(G, ebunch=None, delta=0.001, community=’community’)
Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.

For two nodes 𝑢 and 𝑣, if a common neighbor 𝑤 belongs to the same community as them, 𝑤 is considered as
within-cluster common neighbor of 𝑢 and 𝑣. Otherwise, it is considered as inter-cluster common neighbor of
𝑢 and 𝑣. The ratio between the size of the set of within- and inter-cluster common neighbors is defined as the
WIC measure. 1

Parameters

• G (graph) – A NetworkX undirected graph.

• ebunch (iterable of node pairs, optional (default = None)) – The
WIC measure will be computed for each pair of nodes given in the iterable. The pairs must
be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used. Default value: None.

• delta (float, optional (default = 0.001)) – Value to prevent division by
zero in case there is no inter-cluster common neighbor between two nodes. See 1 for details.
Default value: 0.001.

• community (string, optional (default = ’community’)) – Nodes at-
tribute name containing the community information. G[u][community] identifies which
community u belongs to. Each node belongs to at most one community. Default value:
‘community’.

Returns piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is
their WIC measure.

Return type iterator

1 Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on cluster information. In Proceedings
of the 21st Brazilian conference on Advances in Artificial Intelligence (SBIA‘12) http://dx.doi.org/10.1007/978-3-642-34459-6_10
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Examples

>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 1
>>> G.node[2]['community'] = 0
>>> G.node[3]['community'] = 0
>>> G.node[4]['community'] = 0
>>> preds = nx.within_inter_cluster(G, [(0, 4)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.99800200'
>>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.33333333'

References

4.30 Matching

4.30.1 Matching

maximal_matching(G) Find a maximal cardinality matching in the graph.
max_weight_matching(G[, maxcardinality]) Compute a maximum-weighted matching of G.

4.30.2 maximal_matching

maximal_matching(G)
Find a maximal cardinality matching in the graph.

A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the
number of matched edges.

Parameters G (NetworkX graph) – Undirected graph

Returns matching – A maximal matching of the graph.

Return type set

Notes

The algorithm greedily selects a maximal matching M of the graph G (i.e. no superset of M exists). It runs in
𝑂(|𝐸|) time.
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4.30.3 max_weight_matching

max_weight_matching(G, maxcardinality=False)
Compute a maximum-weighted matching of G.

A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the
number of matched edges. The weight of a matching is the sum of the weights of its edges.

Parameters

• G (NetworkX graph) – Undirected graph

• maxcardinality (bool, optional) – If maxcardinality is True, compute the
maximum-cardinality matching with maximum weight among all maximum-cardinality
matchings.

Returns mate – The matching is returned as a dictionary, mate, such that mate[v] == w if node v is
matched to node w. Unmatched nodes do not occur as a key in mate.

Return type dictionary

Notes

If G has edges with ‘weight’ attribute the edge data are used as weight values else the weights are assumed to
be 1.

This function takes time O(number_of_nodes ** 3).

If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used,
the algorithm could return a slightly suboptimal matching due to numeric precision errors.

This method is based on the “blossom” method for finding augmenting paths and the “primal-dual” method for
finding a matching of maximum weight, both methods invented by Jack Edmonds 1.

Bipartite graphs can also be matched using the functions present in
networkx.algorithms.bipartite.matching.

References

4.31 Minors

Provides functions for computing minors of a graph.

contracted_edge(G, edge[, self_loops]) Returns the graph that results from contracting the specified edge.
contracted_nodes(G, u, v[, self_loops]) Returns the graph that results from contracting u and v.
identified_nodes(G, u, v[, self_loops]) Returns the graph that results from contracting u and v.
quotient_graph(G, node_relation[, ...]) Returns the quotient graph of G under the specified equivalence relation on nodes.

4.31.1 contracted_edge

contracted_edge(G, edge, self_loops=True)
Returns the graph that results from contracting the specified edge.

1 “Efficient Algorithms for Finding Maximum Matching in Graphs”, Zvi Galil, ACM Computing Surveys, 1986.
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Edge contraction identifies the two endpoints of the edge as a single node incident to any edge that was incident
to the original two nodes. A graph that results from edge contraction is called a minor of the original graph.

Parameters

• G (NetworkX graph) – The graph whose edge will be contracted.

• edge (tuple) – Must be a pair of nodes in G.

• self_loops (Boolean) – If this is True, any edges (including edge) joining the end-
points of edge in G become self-loops on the new node in the returned graph.

Returns A new graph object of the same type as G (leaving G unmodified) with endpoints of edge
identified in a single node. The right node of edge will be merged into the left one, so only the
left one will appear in the returned graph.

Return type Networkx graph

Raises ValueError – If edge is not an edge in G.

Examples

Attempting to contract two nonadjacent nodes yields an error:

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> nx.contracted_edge(G, (1, 3))
Traceback (most recent call last):
...

ValueError: Edge (1, 3) does not exist in graph G; cannot contract it

Contracting two adjacent nodes in the cycle graph on n nodes yields the cycle graph on n - 1 nodes:

>>> import networkx as nx
>>> C5 = nx.cycle_graph(5)
>>> C4 = nx.cycle_graph(4)
>>> M = nx.contracted_edge(C5, (0, 1), self_loops=False)
>>> nx.is_isomorphic(M, C4)
True

See also:

contracted_nodes(), quotient_graph()

4.31.2 contracted_nodes

contracted_nodes(G, u, v, self_loops=True)
Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original
two nodes.

Parameters

• G (NetworkX graph) – The graph whose nodes will be contracted.

• v (u,) – Must be nodes in G.

• self_loops (Boolean) – If this is True, any edges joining u and v in G become self-
loops on the new node in the returned graph.
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Returns A new graph object of the same type as G (leaving G unmodified) with u and v identified
in a single node. The right node v will be merged into the node u, so only u will appear in the
returned graph.

Return type Networkx graph

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes 𝐶4 yields the path graph (ignoring parallel
edges):

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True

See also:

contracted_edge(), quotient_graph()

Notes

This function is also available as identified_nodes.

4.31.3 identified_nodes

identified_nodes(G, u, v, self_loops=True)
Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original
two nodes.

Parameters

• G (NetworkX graph) – The graph whose nodes will be contracted.

• v (u,) – Must be nodes in G.

• self_loops (Boolean) – If this is True, any edges joining u and v in G become self-
loops on the new node in the returned graph.

Returns A new graph object of the same type as G (leaving G unmodified) with u and v identified
in a single node. The right node v will be merged into the node u, so only u will appear in the
returned graph.

Return type Networkx graph

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes 𝐶4 yields the path graph (ignoring parallel
edges):
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>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True

See also:

contracted_edge(), quotient_graph()

Notes

This function is also available as identified_nodes.

4.31.4 quotient_graph

quotient_graph(G, node_relation, edge_relation=None, create_using=None)
Returns the quotient graph of G under the specified equivalence relation on nodes.

Parameters

• G (NetworkX graph) – The graph for which to return the quotient graph with the speci-
fied node relation.

• node_relation (Boolean function with two arguments) – This function
must represent an equivalence relation on the nodes of G. It must take two arguments u and
v and return True exactly when u and v are in the same equivalence class. The equivalence
classes form the nodes in the returned graph.

• edge_relation (Boolean function with two arguments) – This function
must represent an edge relation on the blocks of G in the partition induced by
node_relation. It must take two arguments, B and C, each one a set of nodes, and
return True exactly when there should be an edge joining block B to block C in the re-
turned graph.

If edge_relation is not specified, it is assumed to be the following relation. Block B is
related to block C if and only if some node in B is adjacent to some node in C, according to
the edge set of G.

• create_using (NetworkX graph) – If specified, this must be an instance of a Net-
workX graph class. The nodes and edges of the quotient graph will be added to this graph
and returned. If not specified, the returned graph will have the same type as the input graph.

Returns The quotient graph of G under the equivalence relation specified by node_relation.

Return type NetworkX graph

Examples

The quotient graph of the complete bipartite graph under the “same neighbors” equivalence relation is 𝐾2.
Under this relation, two nodes are equivalent if they are not adjacent but have the same neighbor set:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> same_neighbors = lambda u, v: (u not in G[v] and v not in G[u]
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... and G[u] == G[v])
>>> Q = nx.quotient_graph(G, same_neighbors)
>>> K2 = nx.complete_graph(2)
>>> nx.is_isomorphic(Q, K2)
True

The quotient graph of a directed graph under the “same strongly connected component” equivalence relation
is the condensation of the graph (see condensation()). This example comes from the Wikipedia article
‘Strongly connected component‘_:

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> edges = ['ab', 'be', 'bf', 'bc', 'cg', 'cd', 'dc', 'dh', 'ea',
... 'ef', 'fg', 'gf', 'hd', 'hf']
>>> G.add_edges_from(tuple(x) for x in edges)
>>> components = list(nx.strongly_connected_components(G))
>>> sorted(sorted(component) for component in components)
[['a', 'b', 'e'], ['c', 'd', 'h'], ['f', 'g']]
>>>
>>> C = nx.condensation(G, components)
>>> component_of = C.graph['mapping']
>>> same_component = lambda u, v: component_of[u] == component_of[v]
>>> Q = nx.quotient_graph(G, same_component)
>>> nx.is_isomorphic(C, Q)
True

Node identification can be represented as the quotient of a graph under the equivalence relation that places the
two nodes in one block and each other node in its own singleton block:

>>> import networkx as nx
>>> K24 = nx.complete_bipartite_graph(2, 4)
>>> K34 = nx.complete_bipartite_graph(3, 4)
>>> C = nx.contracted_nodes(K34, 1, 2)
>>> nodes = {1, 2}
>>> is_contracted = lambda u, v: u in nodes and v in nodes
>>> Q = nx.quotient_graph(K34, is_contracted)
>>> nx.is_isomorphic(Q, C)
True
>>> nx.is_isomorphic(Q, K24)
True

4.32 Maximal independent set

Algorithm to find a maximal (not maximum) independent set.

maximal_independent_set(G[, nodes]) Return a random maximal independent set guaranteed to contain a given set of nodes.

4.32.1 maximal_independent_set

maximal_independent_set(G, nodes=None)
Return a random maximal independent set guaranteed to contain a given set of nodes.

An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A
maximal independent set is an independent set such that it is not possible to add a new node and still get an
independent set.
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Parameters

• G (NetworkX graph) –

• nodes (list or iterable) – Nodes that must be part of the independent set. This set
of nodes must be independent.

Returns indep_nodes – List of nodes that are part of a maximal independent set.

Return type list

Raises NetworkXUnfeasible – If the nodes in the provided list are not part of the graph or do
not form an independent set, an exception is raised.

Examples

>>> G = nx.path_graph(5)
>>> nx.maximal_independent_set(G)
[4, 0, 2]
>>> nx.maximal_independent_set(G, [1])
[1, 3]

Notes

This algorithm does not solve the maximum independent set problem.

4.33 Minimum Spanning Tree

Computes minimum spanning tree of a weighted graph.

minimum_spanning_tree(G[, weight]) Return a minimum spanning tree or forest of an undirected weighted graph.
minimum_spanning_edges(G[, weight, data]) Generate edges in a minimum spanning forest of an undirected weighted graph.

4.33.1 minimum_spanning_tree

minimum_spanning_tree(G, weight=’weight’)
Return a minimum spanning tree or forest of an undirected weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights.

If the graph is not connected a spanning forest is constructed. A spanning forest is a union of the spanning trees
for each connected component of the graph.

Parameters

• G (NetworkX Graph) –

• weight (string) – Edge data key to use for weight (default ‘weight’).

Returns G – A minimum spanning tree or forest.

Return type NetworkX Graph
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Examples

>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> T=nx.minimum_spanning_tree(G)
>>> print(sorted(T.edges(data=True)))
[(0, 1, {}), (1, 2, {}), (2, 3, {})]

Notes

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1 will be used.

4.33.2 minimum_spanning_edges

minimum_spanning_edges(G, weight=’weight’, data=True)
Generate edges in a minimum spanning forest of an undirected weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning
forest is a union of the spanning trees for each connected component of the graph.

Parameters

• G (NetworkX Graph) –

• weight (string) – Edge data key to use for weight (default ‘weight’).

• data (bool, optional) – If True yield the edge data along with the edge.

Returns edges – A generator that produces edges in the minimum spanning tree. The edges are
three-tuples (u,v,w) where w is the weight.

Return type iterator

Examples

>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges
>>> edgelist=list(mst) # make a list of the edges
>>> print(sorted(edgelist))
[(0, 1), (1, 2), (2, 3)]

Notes

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1 will be used.

Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/
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4.34 Operators

Unary operations on graphs

complement(G[, name]) Return the graph complement of G.
reverse(G[, copy]) Return the reverse directed graph of G.

4.34.1 complement

complement(G, name=None)
Return the graph complement of G.

Parameters

• G (graph) – A NetworkX graph

• name (string) – Specify name for new graph

Returns GC

Return type A new graph.

Notes

Note that complement() does not create self-loops and also does not produce parallel edges for MultiGraphs.

Graph, node, and edge data are not propagated to the new graph.

4.34.2 reverse

reverse(G, copy=True)
Return the reverse directed graph of G.

Parameters

• G (directed graph) – A NetworkX directed graph

• copy (bool) – If True, then a new graph is returned. If False, then the graph is reversed in
place.

Returns H – The reversed G.

Return type directed graph

Operations on graphs including union, intersection, difference.

compose(G, H[, name]) Return a new graph of G composed with H.
union(G, H[, rename, name]) Return the union of graphs G and H.
disjoint_union(G, H) Return the disjoint union of graphs G and H.
intersection(G, H) Return a new graph that contains only the edges that exist in both G and H.
difference(G, H) Return a new graph that contains the edges that exist in G but not in H.
symmetric_difference(G, H) Return new graph with edges that exist in either G or H but not both.
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4.34.3 compose

compose(G, H, name=None)
Return a new graph of G composed with H.

Composition is the simple union of the node sets and edge sets. The node sets of G and H do not need to be
disjoint.

Parameters

• G,H (graph) – A NetworkX graph

• name (string) – Specify name for new graph

Returns C

Return type A new graph with the same type as G

Notes

It is recommended that G and H be either both directed or both undirected. Attributes from H take precedent
over attributes from G.

4.34.4 union

union(G, H, rename=(None, None), name=None)
Return the union of graphs G and H.

Graphs G and H must be disjoint, otherwise an exception is raised.

Parameters

• G,H (graph) – A NetworkX graph

• create_using (NetworkX graph) – Use specified graph for result. Otherwise

• rename (bool , default=(None, None)) – Node names of G and H can be
changed by specifying the tuple rename=(‘G-‘,’H-‘) (for example). Node “u” in G is then
renamed “G-u” and “v” in H is renamed “H-v”.

• name (string) – Specify the name for the union graph

Returns U

Return type A union graph with the same type as G.

Notes

To force a disjoint union with node relabeling, use disjoint_union(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present
in both G and H the value from H is used.

See also:

disjoint_union()
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4.34.5 disjoint_union

disjoint_union(G, H)
Return the disjoint union of graphs G and H.

This algorithm forces distinct integer node labels.

Parameters G,H (graph) – A NetworkX graph

Returns U

Return type A union graph with the same type as G.

Notes

A new graph is created, of the same class as G. It is recommended that G and H be either both directed or both
undirected.

The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are relabeled len(G) to len(G)+len(H)-1.

Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present
in both G and H the value from H is used.

4.34.6 intersection

intersection(G, H)
Return a new graph that contains only the edges that exist in both G and H.

The node sets of H and G must be the same.

Parameters G,H (graph) – A NetworkX graph. G and H must have the same node sets.

Returns GH

Return type A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the
intersection of G and H with the attributes (including edge data) from G use remove_nodes_from() as follows

>>> G=nx.path_graph(3)
>>> H=nx.path_graph(5)
>>> R=G.copy()
>>> R.remove_nodes_from(n for n in G if n not in H)

4.34.7 difference

difference(G, H)
Return a new graph that contains the edges that exist in G but not in H.

The node sets of H and G must be the same.

Parameters G,H (graph) – A NetworkX graph. G and H must have the same node sets.

Returns D

Return type A new graph with the same type as G.
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Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of
the difference of G and H with with the attributes (including edge data) from G use remove_nodes_from() as
follows:

>>> G = nx.path_graph(3)
>>> H = nx.path_graph(5)
>>> R = G.copy()
>>> R.remove_nodes_from(n for n in G if n in H)

4.34.8 symmetric_difference

symmetric_difference(G, H)
Return new graph with edges that exist in either G or H but not both.

The node sets of H and G must be the same.

Parameters G,H (graph) – A NetworkX graph. G and H must have the same node sets.

Returns D

Return type A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph.

Operations on many graphs.

compose_all(graphs[, name]) Return the composition of all graphs.
union_all(graphs[, rename, name]) Return the union of all graphs.
disjoint_union_all(graphs) Return the disjoint union of all graphs.
intersection_all(graphs) Return a new graph that contains only the edges that exist in all graphs.

4.34.9 compose_all

compose_all(graphs, name=None)
Return the composition of all graphs.

Composition is the simple union of the node sets and edge sets. The node sets of the supplied graphs need not
be disjoint.

Parameters

• graphs (list) – List of NetworkX graphs

• name (string) – Specify name for new graph

Returns C

Return type A graph with the same type as the first graph in list
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Notes

It is recommended that the supplied graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple
graphs, then the value from the last graph in the list with that attribute is used.

4.34.10 union_all

union_all(graphs, rename=(None, ), name=None)
Return the union of all graphs.

The graphs must be disjoint, otherwise an exception is raised.

Parameters

• graphs (list of graphs) – List of NetworkX graphs

• rename (bool , default=(None, None)) – Node names of G and H can be
changed by specifying the tuple rename=(‘G-‘,’H-‘) (for example). Node “u” in G is then
renamed “G-u” and “v” in H is renamed “H-v”.

• name (string) – Specify the name for the union graph@not_implemnted_for(‘direct

Returns U

Return type a graph with the same type as the first graph in list

Notes

To force a disjoint union with node relabeling, use disjoint_union_all(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple
graphs, then the value from the last graph in the list with that attribute is used.

See also:

union(), disjoint_union_all()

4.34.11 disjoint_union_all

disjoint_union_all(graphs)
Return the disjoint union of all graphs.

This operation forces distinct integer node labels starting with 0 for the first graph in the list and numbering
consecutively.

Parameters graphs (list) – List of NetworkX graphs

Returns U

Return type A graph with the same type as the first graph in list

326 Chapter 4. Algorithms

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/functions.html#list


NetworkX Reference, Release 1.11

Notes

It is recommended that the graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple
graphs, then the value from the last graph in the list with that attribute is used.

4.34.12 intersection_all

intersection_all(graphs)
Return a new graph that contains only the edges that exist in all graphs.

All supplied graphs must have the same node set.

Parameters graphs_list (list) – List of NetworkX graphs

Returns R

Return type A new graph with the same type as the first graph in list

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph.

Graph products.

cartesian_product(G, H) Return the Cartesian product of G and H.
lexicographic_product(G, H) Return the lexicographic product of G and H.
strong_product(G, H) Return the strong product of G and H.
tensor_product(G, H) Return the tensor product of G and H.
power(G, k) Returns the specified power of a graph.

4.34.13 cartesian_product

cartesian_product(G, H)
Return the Cartesian product of G and H.

The Cartesian product P of the graphs G and H has a node set that is the Cartesian product of the node sets,
𝑉 (𝑃 ) = 𝑉 (𝐺)𝑖𝑚𝑒𝑠𝑉 (𝐻). P has an edge ((u,v),(x,y)) if and only if either u is equal to x and v & y are adjacent
in H or if v is equal to y and u & x are adjacent in G.

Parameters H (G,) – Networkx graphs.

Returns P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-
graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Return type NetworkX graph

Raises NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.
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Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.cartesian_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.14 lexicographic_product

lexicographic_product(G, H)
Return the lexicographic product of G and H.

The lexicographical product P of the graphs G and H has a node set that is the Cartesian product of the node
sets, $V(P)=V(G) imes V(H)$. P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G or u==v and (x,y)
is an edge in H.

Parameters H (G,) – Networkx graphs.

Returns P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-
graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Return type NetworkX graph

Raises NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.lexicographic_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.15 strong_product

strong_product(G, H)
Return the strong product of G and H.

The strong product P of the graphs G and H has a node set that is the Cartesian product of the node sets,
$V(P)=V(G) imes V(H)$. P has an edge ((u,v),(x,y)) if and only if u==v and (x,y) is an edge in H, or x==y and
(u,v) is an edge in G, or (u,v) is an edge in G and (x,y) is an edge in H.
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Parameters H (G,) – Networkx graphs.

Returns P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-
graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Return type NetworkX graph

Raises NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.strong_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.16 tensor_product

tensor_product(G, H)
Return the tensor product of G and H.

The tensor product P of the graphs G and H has a node set that is the Cartesian product of the node sets,
𝑉 (𝑃 ) = 𝑉 (𝐺)×𝑉 (𝐻). P has an edge ((u,v),(x,y)) if and only if (u,x) is an edge in G and (v,y) is an edge in H.

Tensor product is sometimes also referred to as the categorical product, direct product, cardinal product or
conjunction.

Parameters H (G,) – Networkx graphs.

Returns P – The tensor product of G and H. P will be a multi-graph if either G or H is a multi-graph,
will be a directed if G and H are directed, and undirected if G and H are undirected.

Return type NetworkX graph

Raises NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

Examples
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>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.tensor_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.17 power

power(G, k)
Returns the specified power of a graph.

The 𝑘-th power of a simple graph 𝐺 = (𝑉,𝐸) is the graph 𝐺𝑘 whose vertex set is 𝑉 , two distinct vertices 𝑢, 𝑣
are adjacent in 𝐺𝑘 if and only if the shortest path distance between 𝑢 and 𝑣 in 𝐺 is at most 𝑘.

Parameters

• G (graph) – A NetworkX simple graph object.

• k (positive integer) – The power to which to raise the graph 𝐺.

Returns 𝐺 to the 𝑘-th power.

Return type NetworkX simple graph

Raises

• ValueError – If the exponent 𝑘 is not positive.

• NetworkXError – If G is not a simple graph.

Examples

>>> G = nx.path_graph(4)
>>> nx.power(G,2).edges()
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
>>> nx.power(G,3).edges()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

A complete graph of order n is returned if k is greater than equal to n/2 for a cycle graph of even order n, and if
k is greater than equal to (n-1)/2 for a cycle graph of odd order.

>>> G = nx.cycle_graph(5)
>>> nx.power(G,2).edges() == nx.complete_graph(5).edges()
True
>>> G = nx.cycle_graph(8)
>>> nx.power(G,4).edges() == nx.complete_graph(8).edges()
True
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References

Notes

Exercise 3.1.6 of Graph Theory by J. A. Bondy and U. S. R. Murty 1.

4.35 Rich Club

rich_club_coefficient(G[, normalized, Q]) Return the rich-club coefficient of the graph G.

4.35.1 rich_club_coefficient

rich_club_coefficient(G, normalized=True, Q=100)
Return the rich-club coefficient of the graph G.

The rich-club coefficient is the ratio, for every degree k, of the number of actual to the number of potential edges
for nodes with degree greater than k:

𝜑(𝑘) =
2𝐸𝑘

𝑁𝑘(𝑁𝑘 − 1)

where Nk is the number of nodes with degree larger than k, and Ek be the number of edges among those nodes.

Parameters

• G (NetworkX graph) –

• normalized (bool (optional)) – Normalize using randomized network (see 1)

• Q (float (optional, default=100)) – If normalized=True build a random net-
work by performing Q*M double-edge swaps, where M is the number of edges in G, to use
as a null-model for normalization.

Returns rc – A dictionary, keyed by degree, with rich club coefficient values.

Return type dictionary

Examples

>>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)])
>>> rc = nx.rich_club_coefficient(G,normalized=False)
>>> rc[0]
0.4

Notes

The rich club definition and algorithm are found in 1. This algorithm ignores any edge weights and is not defined
for directed graphs or graphs with parallel edges or self loops.

1

10. (a)Bondy, U. S. R. Murty, Graph Theory. Springer, 2008.

1 Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano, “The rich-club phenomenon across complex network hierarchies”,
Applied Physics Letters Vol 91 Issue 8, August 2007. http://arxiv.org/abs/physics/0701290
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Estimates for appropriate values of Q are found in 2.

References

4.36 Shortest Paths

Compute the shortest paths and path lengths between nodes in the graph.

These algorithms work with undirected and directed graphs.

shortest_path(G[, source, target, weight]) Compute shortest paths in the graph.
all_shortest_paths(G, source, target[, weight]) Compute all shortest paths in the graph.
shortest_path_length(G[, source, target, weight]) Compute shortest path lengths in the graph.
average_shortest_path_length(G[, weight]) Return the average shortest path length.
has_path(G, source, target) Return True if G has a path from source to target, False otherwise.

4.36.1 shortest_path

shortest_path(G, source=None, target=None, weight=None)
Compute shortest paths in the graph.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Starting node for path. If not specified, compute shortest
paths using all nodes as source nodes.

• target (node, optional) – Ending node for path. If not specified, compute shortest
paths using all nodes as target nodes.

• weight (None or string, optional (default = None)) – If None, every
edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any
edge attribute not present defaults to 1.

Returns

path – All returned paths include both the source and target in the path.

If the source and target are both specified, return a single list of nodes in a shortest path from the
source to the target.

If only the source is specified, return a dictionary keyed by targets with a list of nodes in a
shortest path from the source to one of the targets.

If only the target is specified, return a dictionary keyed by sources with a list of nodes in a
shortest path from one of the sources to the target.

If neither the source nor target are specified return a dictionary of dictionaries with
path[source][target]=[list of nodes in path].

Return type list or dictionary

2 R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon, “Uniform generation of random graphs with arbitrary degree sequences”, 2006.
http://arxiv.org/abs/cond-mat/0312028
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Examples

>>> G=nx.path_graph(5)
>>> print(nx.shortest_path(G,source=0,target=4))
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,source=0) # target not specified
>>> p[4]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,target=4) # source not specified
>>> p[0]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G) # source,target not specified
>>> p[0][4]
[0, 1, 2, 3, 4]

Notes

There may be more than one shortest path between a source and target. This returns only one of them.

See also:

all_pairs_shortest_path(), all_pairs_dijkstra_path(),
single_source_shortest_path(), single_source_dijkstra_path()

4.36.2 all_shortest_paths

all_shortest_paths(G, source, target, weight=None)
Compute all shortest paths in the graph.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path.

• target (node) – Ending node for path.

• weight (None or string, optional (default = None)) – If None, every
edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any
edge attribute not present defaults to 1.

Returns paths – A generator of all paths between source and target.

Return type generator of lists

Examples

>>> G=nx.Graph()
>>> G.add_path([0,1,2])
>>> G.add_path([0,10,2])
>>> print([p for p in nx.all_shortest_paths(G,source=0,target=2)])
[[0, 1, 2], [0, 10, 2]]
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Notes

There may be many shortest paths between the source and target.

See also:

shortest_path(), single_source_shortest_path(), all_pairs_shortest_path()

4.36.3 shortest_path_length

shortest_path_length(G, source=None, target=None, weight=None)
Compute shortest path lengths in the graph.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Starting node for path. If not specified, compute shortest
path lengths using all nodes as source nodes.

• target (node, optional) – Ending node for path. If not specified, compute shortest
path lengths using all nodes as target nodes.

• weight (None or string, optional (default = None)) – If None, every
edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any
edge attribute not present defaults to 1.

Returns

length – If the source and target are both specified, return the length of the shortest path from
the source to the target.

If only the source is specified, return a dictionary keyed by targets whose values are the lengths
of the shortest path from the source to one of the targets.

If only the target is specified, return a dictionary keyed by sources whose values are the lengths
of the shortest path from one of the sources to the target.

If neither the source nor target are specified return a dictionary of dictionaries with
path[source][target]=L, where L is the length of the shortest path from source to target.

Return type int or dictionary

Raises NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.shortest_path_length(G,source=0,target=4))
4
>>> p=nx.shortest_path_length(G,source=0) # target not specified
>>> p[4]
4
>>> p=nx.shortest_path_length(G,target=4) # source not specified
>>> p[0]
4
>>> p=nx.shortest_path_length(G) # source,target not specified
>>> p[0][4]
4
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Notes

The length of the path is always 1 less than the number of nodes involved in the path since the length measures
the number of edges followed.

For digraphs this returns the shortest directed path length. To find path lengths in the reverse direction use
G.reverse(copy=False) first to flip the edge orientation.

See also:

all_pairs_shortest_path_length(), all_pairs_dijkstra_path_length(),
single_source_shortest_path_length(), single_source_dijkstra_path_length()

4.36.4 average_shortest_path_length

average_shortest_path_length(G, weight=None)
Return the average shortest path length.

The average shortest path length is

𝑎 =
∑︁
𝑠,𝑡∈𝑉

𝑑(𝑠, 𝑡)

𝑛(𝑛− 1)

where 𝑉 is the set of nodes in 𝐺, 𝑑(𝑠, 𝑡) is the shortest path from 𝑠 to 𝑡, and 𝑛 is the number of nodes in 𝐺.

Parameters

• G (NetworkX graph) –

• weight (None or string, optional (default = None)) – If None, every
edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any
edge attribute not present defaults to 1.

Raises NetworkXError: – if the graph is not connected.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.average_shortest_path_length(G))
2.0

For disconnected graphs you can compute the average shortest path length for each compo-
nent: >>> G=nx.Graph([(1,2),(3,4)]) >>> for g in nx.connected_component_subgraphs(G): ...
print(nx.average_shortest_path_length(g)) 1.0 1.0

4.36.5 has_path

has_path(G, source, target)
Return True if G has a path from source to target, False otherwise.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path

• target (node) – Ending node for path
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4.36.6 Advanced Interface

Shortest path algorithms for unweighted graphs.

single_source_shortest_path(G, source[, cutoff]) Compute shortest path between source and all other nodes reachable from source.
single_source_shortest_path_length(G, source) Compute the shortest path lengths from source to all reachable nodes.
all_pairs_shortest_path(G[, cutoff]) Compute shortest paths between all nodes.
all_pairs_shortest_path_length(G[, cutoff]) Computes the shortest path lengths between all nodes in G.
predecessor(G, source[, target, cutoff, ...]) Returns dictionary of predecessors for the path from source to all nodes in G.

single_source_shortest_path

single_source_shortest_path(G, source, cutoff=None)
Compute shortest path between source and all other nodes reachable from source.

Parameters

• G (NetworkX graph) –

• source (node label) – Starting node for path

• cutoff (integer, optional) – Depth to stop the search. Only paths of length <=
cutoff are returned.

Returns lengths – Dictionary, keyed by target, of shortest paths.

Return type dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.single_source_shortest_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]

Notes

The shortest path is not necessarily unique. So there can be multiple paths between the source and each target
node, all of which have the same ‘shortest’ length. For each target node, this function returns only one of those
paths.

See also:

shortest_path()

single_source_shortest_path_length

single_source_shortest_path_length(G, source, cutoff=None)
Compute the shortest path lengths from source to all reachable nodes.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path
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• cutoff (integer, optional) – Depth to stop the search. Only paths of length <=
cutoff are returned.

Returns lengths – Dictionary of shortest path lengths keyed by target.

Return type dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.single_source_shortest_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

See also:

shortest_path_length()

all_pairs_shortest_path

all_pairs_shortest_path(G, cutoff=None)
Compute shortest paths between all nodes.

Parameters

• G (NetworkX graph) –

• cutoff (integer, optional) – Depth at which to stop the search. Only paths of
length at most cutoff are returned.

Returns lengths – Dictionary, keyed by source and target, of shortest paths.

Return type dictionary

Examples

>>> G = nx.path_graph(5)
>>> path = nx.all_pairs_shortest_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]

See also:

floyd_warshall()

all_pairs_shortest_path_length

all_pairs_shortest_path_length(G, cutoff=None)
Computes the shortest path lengths between all nodes in G.

Parameters

• G (NetworkX graph) –

• cutoff (integer, optional) – Depth at which to stop the search. Only paths of
length at most cutoff are returned.
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Returns lengths – Dictionary of shortest path lengths keyed by source and target.

Return type dictionary

Notes

The dictionary returned only has keys for reachable node pairs.

Examples

>>> G = nx.path_graph(5)
>>> length = nx.all_pairs_shortest_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

predecessor

predecessor(G, source, target=None, cutoff=None, return_seen=None)
Returns dictionary of predecessors for the path from source to all nodes in G.

Parameters

• G (NetworkX graph) –

• source (node label) – Starting node for path

• target (node label, optional) – Ending node for path. If provided only prede-
cessors between source and target are returned

• cutoff (integer, optional) – Depth to stop the search. Only paths of length <=
cutoff are returned.

Returns pred – Dictionary, keyed by node, of predecessors in the shortest path.

Return type dictionary

Examples

>>> G=nx.path_graph(4)
>>> print(G.nodes())
[0, 1, 2, 3]
>>> nx.predecessor(G,0)
{0: [], 1: [0], 2: [1], 3: [2]}

Shortest path algorithms for weighed graphs.

dijkstra_path(G, source, target[, weight]) Returns the shortest path from source to target in a weighted graph G.
dijkstra_path_length(G, source, target[, weight]) Returns the shortest path length from source to target in a weighted graph.
single_source_dijkstra_path(G, source[, ...]) Compute shortest path between source and all other reachable nodes for a weighted graph.
single_source_dijkstra_path_length(G, source) Compute the shortest path length between source and all other reachable nodes for a weighted graph.
all_pairs_dijkstra_path(G[, cutoff, weight]) Compute shortest paths between all nodes in a weighted graph.
all_pairs_dijkstra_path_length(G[, cutoff, ...]) Compute shortest path lengths between all nodes in a weighted graph.

Continued on next page
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Table 4.89 – continued from previous page
single_source_dijkstra(G, source[, target, ...]) Compute shortest paths and lengths in a weighted graph G.
bidirectional_dijkstra(G, source, target[, ...]) Dijkstra’s algorithm for shortest paths using bidirectional search.
dijkstra_predecessor_and_distance(G, source) Compute shortest path length and predecessors on shortest paths in weighted graphs.
bellman_ford(G, source[, weight]) Compute shortest path lengths and predecessors on shortest paths in weighted graphs.
negative_edge_cycle(G[, weight]) Return True if there exists a negative edge cycle anywhere in G.
johnson(G[, weight]) Compute shortest paths between all nodes in a weighted graph using Johnson’s algorithm.

dijkstra_path

dijkstra_path(G, source, target, weight=’weight’)
Returns the shortest path from source to target in a weighted graph G.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node

• target (node) – Ending node

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

Returns path – List of nodes in a shortest path.

Return type list

Raises NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path(G,0,4))
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:

bidirectional_dijkstra()

dijkstra_path_length

dijkstra_path_length(G, source, target, weight=’weight’)
Returns the shortest path length from source to target in a weighted graph.

Parameters

• G (NetworkX graph) –

• source (node label) – starting node for path

• target (node label) – ending node for path
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• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

Returns length – Shortest path length.

Return type number

Raises NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path_length(G,0,4))
4

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:

bidirectional_dijkstra()

single_source_dijkstra_path

single_source_dijkstra_path(G, source, cutoff=None, weight=’weight’)
Compute shortest path between source and all other reachable nodes for a weighted graph.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path.

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

• cutoff (integer or float, optional) – Depth to stop the search. Only paths
of length <= cutoff are returned.

Returns paths – Dictionary of shortest path lengths keyed by target.

Return type dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
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Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:

single_source_dijkstra()

single_source_dijkstra_path_length

single_source_dijkstra_path_length(G, source, cutoff=None, weight=’weight’)
Compute the shortest path length between source and all other reachable nodes for a weighted graph.

Parameters

• G (NetworkX graph) –

• source (node label) – Starting node for path

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight.

• cutoff (integer or float, optional) – Depth to stop the search. Only paths
of length <= cutoff are returned.

Returns length – Dictionary of shortest lengths keyed by target.

Return type dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:

single_source_dijkstra()

all_pairs_dijkstra_path

all_pairs_dijkstra_path(G, cutoff=None, weight=’weight’)
Compute shortest paths between all nodes in a weighted graph.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight
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• cutoff (integer or float, optional) – Depth to stop the search. Only paths
of length <= cutoff are returned.

Returns distance – Dictionary, keyed by source and target, of shortest paths.

Return type dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.all_pairs_dijkstra_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:

floyd_warshall()

all_pairs_dijkstra_path_length

all_pairs_dijkstra_path_length(G, cutoff=None, weight=’weight’)
Compute shortest path lengths between all nodes in a weighted graph.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

• cutoff (integer or float, optional) – Depth to stop the search. Only paths
of length <= cutoff are returned.

Returns distance – Dictionary, keyed by source and target, of shortest path lengths.

Return type dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_dijkstra_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The dictionary returned only has keys for reachable node pairs.
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single_source_dijkstra

single_source_dijkstra(G, source, target=None, cutoff=None, weight=’weight’)
Compute shortest paths and lengths in a weighted graph G.

Uses Dijkstra’s algorithm for shortest paths.

Parameters

• G (NetworkX graph) –

• source (node label) – Starting node for path

• target (node label, optional) – Ending node for path

• cutoff (integer or float, optional) – Depth to stop the search. Only paths
of length <= cutoff are returned.

Returns distance,path – Returns a tuple of two dictionaries keyed by node. The first dictionary
stores distance from the source. The second stores the path from the source to that node.

Return type dictionaries

Examples

>>> G=nx.path_graph(5)
>>> length,path=nx.single_source_dijkstra(G,0)
>>> print(length[4])
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>> path[4]
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Based on the Python cookbook recipe (119466) at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows
and roundoff errors can cause problems).

See also:

single_source_dijkstra_path(), single_source_dijkstra_path_length()

bidirectional_dijkstra

bidirectional_dijkstra(G, source, target, weight=’weight’)
Dijkstra’s algorithm for shortest paths using bidirectional search.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node.

• target (node) – Ending node.

4.36. Shortest Paths 343

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466


NetworkX Reference, Release 1.11

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

Returns

• length (number) – Shortest path length.

• Returns a tuple of two dictionaries keyed by node.

• The first dictionary stores distance from the source.

• The second stores the path from the source to that node.

Raises NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print(length)
4
>>> print(path)
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

In practice bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra.

Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The radius of this sphere will even-
tually be the length of the shortest path. Bidirectional Dijkstra will expand nodes from both the source and
the target, making two spheres of half this radius. Volume of the first sphere is pi*r*r while the others are
2*pi*r/2*r/2, making up half the volume.

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows
and roundoff errors can cause problems).

See also:

shortest_path(), shortest_path_length()

dijkstra_predecessor_and_distance

dijkstra_predecessor_and_distance(G, source, cutoff=None, weight=’weight’)
Compute shortest path length and predecessors on shortest paths in weighted graphs.

Parameters

• G (NetworkX graph) –

• source (node label) – Starting node for path

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

• cutoff (integer or float, optional) – Depth to stop the search. Only paths
of length <= cutoff are returned.
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Returns pred,distance – Returns two dictionaries representing a list of predecessors of a node and
the distance to each node.

Return type dictionaries

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The list of predecessors contains more than one element only when there are more than one shortest paths to the
key node.

bellman_ford

bellman_ford(G, source, weight=’weight’)
Compute shortest path lengths and predecessors on shortest paths in weighted graphs.

The algorithm has a running time of O(mn) where n is the number of nodes and m is the number of edges. It is
slower than Dijkstra but can handle negative edge weights.

Parameters

• G (NetworkX graph) – The algorithm works for all types of graphs, including directed
graphs and multigraphs.

• source (node label) – Starting node for path

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

Returns pred, dist – Returns two dictionaries keyed by node to predecessor in the path and to the
distance from the source respectively.

Return type dictionaries

Raises NetworkXUnbounded – If the (di)graph contains a negative cost (di)cycle, the algorithm
raises an exception to indicate the presence of the negative cost (di)cycle. Note: any negative
weight edge in an undirected graph is a negative cost cycle.

Examples

>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.bellman_ford(G, 0)
>>> sorted(pred.items())
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
>>> sorted(dist.items())
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)
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Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The dictionaries returned only have keys for nodes reachable from the source.

In the case where the (di)graph is not connected, if a component not containing the source contains a negative
cost (di)cycle, it will not be detected.

negative_edge_cycle

negative_edge_cycle(G, weight=’weight’)
Return True if there exists a negative edge cycle anywhere in G.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight

Returns negative_cycle – True if a negative edge cycle exists, otherwise False.

Return type bool

Examples

>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

This algorithm uses bellman_ford() but finds negative cycles on any component by first adding a new node
connected to every node, and starting bellman_ford on that node. It then removes that extra node.

johnson

johnson(G, weight=’weight’)
Compute shortest paths between all nodes in a weighted graph using Johnson’s algorithm.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight.

Returns distance – Dictionary, keyed by source and target, of shortest paths.

Return type dictionary
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Raises NetworkXError – If given graph is not weighted.

Examples

>>> import networkx as nx
>>> graph = nx.DiGraph()
>>> graph.add_weighted_edges_from([('0', '3', 3), ('0', '1', -5),
... ('0', '2', 2), ('1', '2', 4), ('2', '3', 1)])
>>> paths = nx.johnson(graph, weight='weight')
>>> paths['0']['2']
['0', '1', '2']

Notes

Johnson’s algorithm is suitable even for graphs with negative weights. It works by using the Bellman–Ford
algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra’s
algorithm to be used on the transformed graph.

It may be faster than Floyd - Warshall algorithm in sparse graphs. Algorithm complexity: O(V^2 * logV + V *
E)

See also:

floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(),
all_pairs_shortest_path(), all_pairs_shortest_path_length(),
all_pairs_dijkstra_path(), bellman_ford()

4.36.7 Dense Graphs

Floyd-Warshall algorithm for shortest paths.

floyd_warshall(G[, weight]) Find all-pairs shortest path lengths using Floyd’s algorithm.
floyd_warshall_predecessor_and_distance(G[, ...]) Find all-pairs shortest path lengths using Floyd’s algorithm.
floyd_warshall_numpy(G[, nodelist, weight]) Find all-pairs shortest path lengths using Floyd’s algorithm.

floyd_warshall

floyd_warshall(G, weight=’weight’)
Find all-pairs shortest path lengths using Floyd’s algorithm.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default= ’weight’)) – Edge data key corre-
sponding to the edge weight.

Returns distance – A dictionary, keyed by source and target, of shortest paths distances between
nodes.

Return type dict

4.36. Shortest Paths 347

http://docs.python.org/library/stdtypes.html#dict


NetworkX Reference, Release 1.11

Notes

Floyd’s algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when
Dijkstra’s algorithm fails. This algorithm can still fail if there are negative cycles. It has running time O(n^3)
with running space of O(n^2).

See also:

floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(),
all_pairs_shortest_path(), all_pairs_shortest_path_length()

floyd_warshall_predecessor_and_distance

floyd_warshall_predecessor_and_distance(G, weight=’weight’)
Find all-pairs shortest path lengths using Floyd’s algorithm.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default= ’weight’)) – Edge data key corre-
sponding to the edge weight.

Returns predecessor,distance – Dictionaries, keyed by source and target, of predecessors and dis-
tances in the shortest path.

Return type dictionaries

Notes

Floyd’s algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when
Dijkstra’s algorithm fails. This algorithm can still fail if there are negative cycles. It has running time O(n^3)
with running space of O(n^2).

See also:

floyd_warshall(), floyd_warshall_numpy(), all_pairs_shortest_path(),
all_pairs_shortest_path_length()

floyd_warshall_numpy

floyd_warshall_numpy(G, nodelist=None, weight=’weight’)
Find all-pairs shortest path lengths using Floyd’s algorithm.

Parameters

• G (NetworkX graph) –

• nodelist (list, optional) – The rows and columns are ordered by the nodes in
nodelist. If nodelist is None then the ordering is produced by G.nodes().

• weight (string, optional (default= ’weight’)) – Edge data key corre-
sponding to the edge weight.

Returns distance – A matrix of shortest path distances between nodes. If there is no path between
to nodes the corresponding matrix entry will be Inf.

Return type NumPy matrix
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Notes

Floyd’s algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when
Dijkstra’s algorithm fails. This algorithm can still fail if there are negative cycles. It has running time O(n^3)
with running space of O(n^2).

4.36.8 A* Algorithm

Shortest paths and path lengths using A* (“A star”) algorithm.

astar_path(G, source, target[, heuristic, ...]) Return a list of nodes in a shortest path between source and target using the A* (“A-star”) algorithm.
astar_path_length(G, source, target[, ...]) Return the length of the shortest path between source and target using the A* (“A-star”) algorithm.

astar_path

astar_path(G, source, target, heuristic=None, weight=’weight’)
Return a list of nodes in a shortest path between source and target using the A* (“A-star”) algorithm.

There may be more than one shortest path. This returns only one.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path

• target (node) – Ending node for path

• heuristic (function) – A function to evaluate the estimate of the distance from the a
node to the target. The function takes two nodes arguments and must return a number.

• weight (string, optional (default=’weight’)) – Edge data key corre-
sponding to the edge weight.

Raises NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.astar_path(G,0,4))
[0, 1, 2, 3, 4]
>>> G=nx.grid_graph(dim=[3,3]) # nodes are two-tuples (x,y)
>>> def dist(a, b):
... (x1, y1) = a
... (x2, y2) = b
... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
>>> print(nx.astar_path(G,(0,0),(2,2),dist))
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)]

See also:

shortest_path(), dijkstra_path()
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astar_path_length

astar_path_length(G, source, target, heuristic=None, weight=’weight’)
Return the length of the shortest path between source and target using the A* (“A-star”) algorithm.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path

• target (node) – Ending node for path

• heuristic (function) – A function to evaluate the estimate of the distance from the a
node to the target. The function takes two nodes arguments and must return a number.

Raises NetworkXNoPath – If no path exists between source and target.

See also:

astar_path()

4.37 Simple Paths

all_simple_paths(G, source, target[, cutoff]) Generate all simple paths in the graph G from source to target.
shortest_simple_paths(G, source, target[, ...]) Generate all simple paths in the graph G from source to target, starting from shortest ones.

4.37.1 all_simple_paths

all_simple_paths(G, source, target, cutoff=None)
Generate all simple paths in the graph G from source to target.

A simple path is a path with no repeated nodes.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path

• target (node) – Ending node for path

• cutoff (integer, optional) – Depth to stop the search. Only paths of length <=
cutoff are returned.

Returns path_generator – A generator that produces lists of simple paths. If there are no paths
between the source and target within the given cutoff the generator produces no output.

Return type generator

Examples

>>> G = nx.complete_graph(4)
>>> for path in nx.all_simple_paths(G, source=0, target=3):
... print(path)
...
[0, 1, 2, 3]
[0, 1, 3]
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[0, 2, 1, 3]
[0, 2, 3]
[0, 3]
>>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
>>> print(list(paths))
[[0, 1, 3], [0, 2, 3], [0, 3]]

Notes

This algorithm uses a modified depth-first search to generate the paths 1. A single path can be found in 𝑂(𝑉 +𝐸)
time but the number of simple paths in a graph can be very large, e.g. 𝑂(𝑛!) in the complete graph of order n.

References

See also:

all_shortest_paths(), shortest_path()

4.37.2 shortest_simple_paths

shortest_simple_paths(G, source, target, weight=None)

Generate all simple paths in the graph G from source to target, starting from shortest ones.

A simple path is a path with no repeated nodes.

If a weighted shortest path search is to be used, no negative weights are allawed.

Parameters

• G (NetworkX graph) –

• source (node) – Starting node for path

• target (node) – Ending node for path

• weight (string) – Name of the edge attribute to be used as a weight. If None all edges
are considered to have unit weight. Default value None.

Returns path_generator – A generator that produces lists of simple paths, in order from shortest to
longest.

Return type generator

Raises

• NetworkXNoPath – If no path exists between source and target.

• NetworkXError – If source or target nodes are not in the input graph.

• NetworkXNotImplemented – If the input graph is a Multi[Di]Graph.

Examples

1 R. Sedgewick, “Algorithms in C, Part 5: Graph Algorithms”, Addison Wesley Professional, 3rd ed., 2001.
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>>> G = nx.cycle_graph(7)
>>> paths = list(nx.shortest_simple_paths(G, 0, 3))
>>> print(paths)
[[0, 1, 2, 3], [0, 6, 5, 4, 3]]

You can use this function to efficiently compute the k shortest/best paths between two nodes.

>>> from itertools import islice
>>> def k_shortest_paths(G, source, target, k, weight=None):
... return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k))
>>> for path in k_shortest_paths(G, 0, 3, 2):
... print(path)
[0, 1, 2, 3]
[0, 6, 5, 4, 3]

Notes

This procedure is based on algorithm by Jin Y. Yen 1. Finding the first K paths requires O(KN^3) operations.

See also:

all_shortest_paths(), shortest_path(), all_simple_paths()

References

4.38 Swap

Swap edges in a graph.

double_edge_swap(G[, nswap, max_tries]) Swap two edges in the graph while keeping the node degrees fixed.
connected_double_edge_swap(G[, nswap, ...]) Attempts the specified number of double-edge swaps in the graph G.

4.38.1 double_edge_swap

double_edge_swap(G, nswap=1, max_tries=100)
Swap two edges in the graph while keeping the node degrees fixed.

A double-edge swap removes two randomly chosen edges u-v and x-y and creates the new edges u-x and v-y:

u--v u v
becomes | |

x--y x y

If either the edge u-x or v-y already exist no swap is performed and another attempt is made to find a suitable
edge pair.

Parameters

• G (graph) – An undirected graph

• nswap (integer (optional, default=1)) – Number of double-edge swaps to
perform

1 Jin Y. Yen, “Finding the K Shortest Loopless Paths in a Network”, Management Science, Vol. 17, No. 11, Theory Series (Jul., 1971), pp.
712-716.
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• max_tries (integer (optional)) – Maximum number of attempts to swap edges

Returns G – The graph after double edge swaps.

Return type graph

Notes

Does not enforce any connectivity constraints.

The graph G is modified in place.

4.38.2 connected_double_edge_swap

connected_double_edge_swap(G, nswap=1, _window_threshold=3)
Attempts the specified number of double-edge swaps in the graph G.

A double-edge swap removes two randomly chosen edges (u, v) and (x, y) and creates the new edges
(u, x) and (v, y):

u--v u v
becomes | |

x--y x y

If either (u, x) or (v, y) already exist, then no swap is performed so the actual number of swapped edges
is always at most nswap.

Parameters

• G (graph) – An undirected graph

• nswap (integer (optional, default=1)) – Number of double-edge swaps to
perform

• _window_threshold (integer) – The window size below which connectedness of
the graph will be checked after each swap.

The “window” in this function is a dynamically updated integer that represents the number of
swap attempts to make before checking if the graph remains connected. It is an optimization
used to decrease the running time of the algorithm in exchange for increased complexity of
implementation.

If the window size is below this threshold, then the algorithm checks after each swap if the
graph remains connected by checking if there is a path joining the two nodes whose edge
was just removed. If the window size is above this threshold, then the algorithm performs
do all the swaps in the window and only then check if the graph is still connected.

Returns The number of successful swaps

Return type int

Raises NetworkXError

If the input graph is not connected, or if the graph has fewer than four nodes.

Notes

The initial graph G must be connected, and the resulting graph is connected. The graph G is modified in place.
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References

4.39 Traversal

4.39.1 Depth First Search

Depth-first search

Basic algorithms for depth-first searching the nodes of a graph.

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

dfs_edges(G[, source]) Produce edges in a depth-first-search (DFS).
dfs_tree(G, source) Return oriented tree constructed from a depth-first-search from source.
dfs_predecessors(G[, source]) Return dictionary of predecessors in depth-first-search from source.
dfs_successors(G[, source]) Return dictionary of successors in depth-first-search from source.
dfs_preorder_nodes(G[, source]) Produce nodes in a depth-first-search pre-ordering starting from source.
dfs_postorder_nodes(G[, source]) Produce nodes in a depth-first-search post-ordering starting from source.
dfs_labeled_edges(G[, source]) Produce edges in a depth-first-search (DFS) labeled by type.

dfs_edges

dfs_edges(G, source=None)
Produce edges in a depth-first-search (DFS).

Parameters

• G (NetworkX graph) –

• source (node, optional) – Specify starting node for depth-first search and return
edges in the component reachable from source.

Returns edges – A generator of edges in the depth-first-search.

Return type generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph
are searched.
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dfs_tree

dfs_tree(G, source)
Return oriented tree constructed from a depth-first-search from source.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Specify starting node for depth-first search.

Returns T – An oriented tree

Return type NetworkX DiGraph

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> T = nx.dfs_tree(G,0)
>>> print(T.edges())
[(0, 1), (1, 2)]

dfs_predecessors

dfs_predecessors(G, source=None)
Return dictionary of predecessors in depth-first-search from source.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Specify starting node for depth-first search and return
edges in the component reachable from source.

Returns pred – A dictionary with nodes as keys and predecessor nodes as values.

Return type dict

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_predecessors(G,0))
{1: 0, 2: 1}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph
are searched.
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dfs_successors

dfs_successors(G, source=None)
Return dictionary of successors in depth-first-search from source.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Specify starting node for depth-first search and return
edges in the component reachable from source.

Returns succ – A dictionary with nodes as keys and list of successor nodes as values.

Return type dict

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_successors(G,0))
{0: [1], 1: [2]}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph
are searched.

dfs_preorder_nodes

dfs_preorder_nodes(G, source=None)
Produce nodes in a depth-first-search pre-ordering starting from source.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Specify starting node for depth-first search and return
edges in the component reachable from source.

Returns nodes – A generator of nodes in a depth-first-search pre-ordering.

Return type generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_preorder_nodes(G,0)))
[0, 1, 2]
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Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph
are searched.

dfs_postorder_nodes

dfs_postorder_nodes(G, source=None)
Produce nodes in a depth-first-search post-ordering starting from source.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Specify starting node for depth-first search and return
edges in the component reachable from source.

Returns nodes – A generator of nodes in a depth-first-search post-ordering.

Return type generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_postorder_nodes(G,0)))
[2, 1, 0]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph
are searched.

dfs_labeled_edges

dfs_labeled_edges(G, source=None)
Produce edges in a depth-first-search (DFS) labeled by type.

Parameters

• G (NetworkX graph) –

• source (node, optional) – Specify starting node for depth-first search and return
edges in the component reachable from source.

Returns edges – A generator of edges in the depth-first-search labeled with ‘forward’, ‘nontree’,
and ‘reverse’.

Return type generator
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Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> edges = (list(nx.dfs_labeled_edges(G,0)))

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph
are searched.

4.39.2 Breadth First Search

Breadth-first search

Basic algorithms for breadth-first searching the nodes of a graph.

bfs_edges(G, source[, reverse]) Produce edges in a breadth-first-search starting at source.
bfs_tree(G, source[, reverse]) Return an oriented tree constructed from of a breadth-first-search starting at source.
bfs_predecessors(G, source) Return dictionary of predecessors in breadth-first-search from source.
bfs_successors(G, source) Return dictionary of successors in breadth-first-search from source.

bfs_edges

bfs_edges(G, source, reverse=False)
Produce edges in a breadth-first-search starting at source.

Parameters

• G (NetworkX graph) –

• source (node) – Specify starting node for breadth-first search and return edges in the
component reachable from source.

• reverse (bool, optional) – If True traverse a directed graph in the reverse direction

Returns edges – A generator of edges in the breadth-first-search.

Return type generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.
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bfs_tree

bfs_tree(G, source, reverse=False)
Return an oriented tree constructed from of a breadth-first-search starting at source.

Parameters

• G (NetworkX graph) –

• source (node) – Specify starting node for breadth-first search and return edges in the
component reachable from source.

• reverse (bool, optional) – If True traverse a directed graph in the reverse direction

Returns T – An oriented tree

Return type NetworkX DiGraph

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.

bfs_predecessors

bfs_predecessors(G, source)
Return dictionary of predecessors in breadth-first-search from source.

Parameters

• G (NetworkX graph) –

• source (node) – Specify starting node for breadth-first search and return edges in the
component reachable from source.

Returns pred – A dictionary with nodes as keys and predecessor nodes as values.

Return type dict

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_predecessors(G,0))
{1: 0, 2: 1}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.
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bfs_successors

bfs_successors(G, source)
Return dictionary of successors in breadth-first-search from source.

Parameters

• G (NetworkX graph) –

• source (node) – Specify starting node for breadth-first search and return edges in the
component reachable from source.

Returns succ – A dictionary with nodes as keys and list of succssors nodes as values.

Return type dict

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_successors(G,0))
{0: [1], 1: [2]}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py by D. Eppstein, July 2004.

4.39.3 Depth First Search on Edges

Depth First Search on Edges

Algorithms for a depth-first traversal of edges in a graph.

edge_dfs(G[, source, orientation]) A directed, depth-first traversal of edges in G, beginning at source.

edge_dfs

edge_dfs(G, source=None, orientation=’original’)
A directed, depth-first traversal of edges in G, beginning at source.

Parameters

• G (graph) – A directed/undirected graph/multigraph.

• source (node, list of nodes) – The node from which the traversal begins. If
None, then a source is chosen arbitrarily and repeatedly until all edges from each node in
the graph are searched.

• orientation (’original’ | ’reverse’ | ’ignore’) – For directed graphs
and directed multigraphs, edge traversals need not respect the original orientation of the
edges. When set to ‘reverse’, then every edge will be traversed in the reverse direction.
When set to ‘ignore’, then each directed edge is treated as a single undirected edge that
can be traversed in either direction. For undirected graphs and undirected multigraphs, this
parameter is meaningless and is not consulted by the algorithm.
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Yields edge (directed edge) – A directed edge indicating the path taken by the depth-first traversal.
For graphs, edge is of the form (u, v) where u and v are the tail and head of the edge as
determined by the traversal. For multigraphs, edge is of the form (u, v, key), where 𝑘𝑒𝑦
is the key of the edge. When the graph is directed, then u and v are always in the order of the
actual directed edge. If orientation is ‘reverse’ or ‘ignore’, then edge takes the form (u, v,
key, direction) where direction is a string, ‘forward’ or ‘reverse’, that indicates if the
edge was traversed in the forward (tail to head) or reverse (head to tail) direction, respectively.

Examples

>>> import networkx as nx
>>> nodes = [0, 1, 2, 3]
>>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.Graph(edges), nodes))
[(0, 1), (1, 2), (1, 3)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes))
[(0, 1), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')]

Notes

The goal of this function is to visit edges. It differs from the more familiar depth-first traversal of nodes, as
provided by networkx.algorithms.traversal.depth_first_search.dfs_edges(), in that
it does not stop once every node has been visited. In a directed graph with edges [(0, 1), (1, 2), (2, 1)], the edge
(2, 1) would not be visited if not for the functionality provided by this function.

See also:

dfs_edges()

4.40 Tree

4.40.1 Recognition

Recognition Tests

A forest is an acyclic, undirected graph, and a tree is a connected forest. Depending on the subfield, there are various
conventions for generalizing these definitions to directed graphs.

4.40. Tree 361



NetworkX Reference, Release 1.11

In one convention, directed variants of forest and tree are defined in an identical manner, except that the direction of
the edges is ignored. In effect, each directed edge is treated as a single undirected edge. Then, additional restrictions
are imposed to define branchings and arborescences.

In another convention, directed variants of forest and tree correspond to the previous convention’s branchings and
arborescences, respectively. Then two new terms, polyforest and polytree, are defined to correspond to the other
convention’s forest and tree.

Summarizing:

+-----------------------------+
| Convention A | Convention B |
+=============================+
| forest | polyforest |
| tree | polytree |
| branching | forest |
| arborescence | tree |
+-----------------------------+

Each convention has its reasons. The first convention emphasizes definitional similarity in that directed forests and
trees are only concerned with acyclicity and do not have an in-degree constraint, just as their undirected counterparts do
not. The second convention emphasizes functional similarity in the sense that the directed analog of a spanning tree is
a spanning arborescence. That is, take any spanning tree and choose one node as the root. Then every edge is assigned
a direction such there is a directed path from the root to every other node. The result is a spanning arborescence.

NetworkX follows convention “A”. Explicitly, these are:

undirected forest An undirected graph with no undirected cycles.

undirected tree A connected, undirected forest.

directed forest A directed graph with no undirected cycles. Equivalently, the underlying graph structure (which
ignores edge orientations) is an undirected forest. In convention B, this is known as a polyforest.

directed tree A weakly connected, directed forest. Equivalently, the underlying graph structure (which ignores edge
orientations) is an undirected tree. In convention B, this is known as a polytree.

branching A directed forest with each node having, at most, one parent. So the maximum in-degree is equal to 1. In
convention B, this is known as a forest.

arborescence A directed tree with each node having, at most, one parent. So the maximum in-degree is equal to 1.
In convention B, this is known as a tree.

For trees and arborescences, the adjective “spanning” may be added to designate that the graph, when considered as
a forest/branching, consists of a single tree/arborescence that includes all nodes in the graph. It is true, by definition,
that every tree/arborescence is spanning with respect to the nodes that define the tree/arborescence and so, it might
seem redundant to introduce the notion of “spanning”. However, the nodes may represent a subset of nodes from a
larger graph, and it is in this context that the term “spanning” becomes a useful notion.

is_tree(G) Returns True if G is a tree.
is_forest(G) Returns True if G is a forest.
is_arborescence(G) Returns True if G is an arborescence.
is_branching(G) Returns True if G is a branching.

is_tree

is_tree(G)
Returns True if G is a tree.

A tree is a connected graph with no undirected cycles.
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For directed graphs, G is a tree if the underlying graph is a tree. The underlying graph is obtained by treating
each directed edge as a single undirected edge in a multigraph.

Parameters G (graph) – The graph to test.

Returns b – A boolean that is True if G is a tree.

Return type bool

Notes

In another convention, a directed tree is known as a polytree and then tree corresponds to an arborescence.

See also:

is_arborescence()

is_forest

is_forest(G)
Returns True if G is a forest.

A forest is a graph with no undirected cycles.

For directed graphs, G is a forest if the underlying graph is a forest. The underlying graph is obtained by treating
each directed edge as a single undirected edge in a multigraph.

Parameters G (graph) – The graph to test.

Returns b – A boolean that is True if G is a forest.

Return type bool

Notes

In another convention, a directed forest is known as a polyforest and then forest corresponds to a branching.

See also:

is_branching()

is_arborescence

is_arborescence(G)
Returns True if G is an arborescence.

An arborescence is a directed tree with maximum in-degree equal to 1.

Parameters G (graph) – The graph to test.

Returns b – A boolean that is True if G is an arborescence.

Return type bool
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Notes

In another convention, an arborescence is known as a tree.

See also:

is_tree()

is_branching

is_branching(G)
Returns True if G is a branching.

A branching is a directed forest with maximum in-degree equal to 1.

Parameters G (directed graph) – The directed graph to test.

Returns b – A boolean that is True if G is a branching.

Return type bool

Notes

In another convention, a branching is also known as a forest.

See also:

is_forest()

4.40.2 Branchings and Spanning Arborescences

Algorithms for finding optimum branchings and spanning arborescences.

This implementation is based on:

J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967), 233–240. URL:
http://archive.org/details/jresv71Bn4p233

branching_weight(G[, attr, default]) Returns the total weight of a branching.
greedy_branching(G[, attr, default, kind]) Returns a branching obtained through a greedy algorithm.
maximum_branching(G[, attr, default]) Returns a maximum branching from G.
minimum_branching(G[, attr, default]) Returns a minimum branching from G.
maximum_spanning_arborescence(G[, attr, default]) Returns a maximum spanning arborescence from G.
minimum_spanning_arborescence(G[, attr, default]) Returns a minimum spanning arborescence from G.
Edmonds(G[, seed]) Edmonds algorithm for finding optimal branchings and spanning arborescences.

branching_weight

branching_weight(G, attr=’weight’, default=1)
Returns the total weight of a branching.
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greedy_branching

greedy_branching(G, attr=’weight’, default=1, kind=’max’)
Returns a branching obtained through a greedy algorithm.

This algorithm is wrong, and cannot give a proper optimal branching. However, we include it for pedagogical
reasons, as it can be helpful to see what its outputs are.

The output is a branching, and possibly, a spanning arborescence. However, it is not guaranteed to be optimal
in either case.

Parameters

• G (DiGraph) – The directed graph to scan.

• attr (str) – The attribute to use as weights. If None, then each edge will be treated
equally with a weight of 1.

• default (float) – When 𝑎𝑡𝑡𝑟 is not None, then if an edge does not have that attribute,
𝑑𝑒𝑓𝑎𝑢𝑙𝑡 specifies what value it should take.

• kind (str) – The type of optimum to search for: ‘min’ or ‘max’ greedy branching.

Returns B – The greedily obtained branching.

Return type directed graph

maximum_branching

maximum_branching(G, attr=’weight’, default=1)
Returns a maximum branching from G.

Parameters

• G ((multi)digraph-like) – The graph to be searched.

• attr (str) – The edge attribute used to in determining optimality.

• default (float) – The value of the edge attribute used if an edge does not have the
attribute 𝑎𝑡𝑡𝑟.

Returns B – A maximum branching.

Return type (multi)digraph-like

minimum_branching

minimum_branching(G, attr=’weight’, default=1)
Returns a minimum branching from G.

Parameters

• G ((multi)digraph-like) – The graph to be searched.

• attr (str) – The edge attribute used to in determining optimality.

• default (float) – The value of the edge attribute used if an edge does not have the
attribute 𝑎𝑡𝑡𝑟.

Returns B – A minimum branching.

Return type (multi)digraph-like
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maximum_spanning_arborescence

maximum_spanning_arborescence(G, attr=’weight’, default=1)
Returns a maximum spanning arborescence from G.

Parameters

• G ((multi)digraph-like) – The graph to be searched.

• attr (str) – The edge attribute used to in determining optimality.

• default (float) – The value of the edge attribute used if an edge does not have the
attribute 𝑎𝑡𝑡𝑟.

Returns B – A maximum spanning arborescence.

Return type (multi)digraph-like

Raises NetworkXException – If the graph does not contain a maximum spanning arborescence.

minimum_spanning_arborescence

minimum_spanning_arborescence(G, attr=’weight’, default=1)
Returns a minimum spanning arborescence from G.

Parameters

• G ((multi)digraph-like) – The graph to be searched.

• attr (str) – The edge attribute used to in determining optimality.

• default (float) – The value of the edge attribute used if an edge does not have the
attribute 𝑎𝑡𝑡𝑟.

Returns B – A minimum spanning arborescence.

Return type (multi)digraph-like

Raises NetworkXException – If the graph does not contain a minimum spanning arborescence.

Edmonds

class Edmonds(G, seed=None)
Edmonds algorithm for finding optimal branchings and spanning arborescences.

__init__(G, seed=None)

Methods

__init__(G[, seed])
find_optimum([attr, default, kind, style]) Returns a branching from G.

4.41 Triads

Functions for analyzing triads of a graph.
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triadic_census(G) Determines the triadic census of a directed graph.

4.41.1 triadic_census

triadic_census(G)
Determines the triadic census of a directed graph.

The triadic census is a count of how many of the 16 possible types of triads are present in a directed graph.

Parameters G (digraph) – A NetworkX DiGraph

Returns census – Dictionary with triad names as keys and number of occurrences as values.

Return type dict

Notes

This algorithm has complexity 𝑂(𝑚) where 𝑚 is the number of edges in the graph.

References

4.42 Vitality

Vitality measures.

closeness_vitality(G[, weight]) Compute closeness vitality for nodes.

4.42.1 closeness_vitality

closeness_vitality(G, weight=None)
Compute closeness vitality for nodes.

Closeness vitality of a node is the change in the sum of distances between all node pairs when excluding that
node.

Parameters

• G (graph) –

• weight (None or string (optional)) – The name of the edge attribute used as
weight. If None the edge weights are ignored.

Returns nodes – Dictionary with nodes as keys and closeness vitality as the value.

Return type dictionary

Examples

>>> G=nx.cycle_graph(3)
>>> nx.closeness_vitality(G)
{0: 4.0, 1: 4.0, 2: 4.0}
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See also:

closeness_centrality()

References
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Functions

Functional interface to graph methods and assorted utilities.

5.1 Graph

degree(G[, nbunch, weight]) Return degree of single node or of nbunch of nodes.
degree_histogram(G) Return a list of the frequency of each degree value.
density(G) Return the density of a graph.
info(G[, n]) Print short summary of information for the graph G or the node n.
create_empty_copy(G[, with_nodes]) Return a copy of the graph G with all of the edges removed.
is_directed(G) Return True if graph is directed.

5.1.1 degree

degree(G, nbunch=None, weight=None)
Return degree of single node or of nbunch of nodes. If nbunch is ommitted, then return degrees of all nodes.

5.1.2 degree_histogram

degree_histogram(G)
Return a list of the frequency of each degree value.

Parameters G (Networkx graph) – A graph

Returns hist – A list of frequencies of degrees. The degree values are the index in the list.

Return type list

Notes

Note: the bins are width one, hence len(list) can be large (Order(number_of_edges))

5.1.3 density

density(G)
Return the density of a graph.
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The density for undirected graphs is

𝑑 =
2𝑚

𝑛(𝑛− 1)
,

and for directed graphs is

𝑑 =
𝑚

𝑛(𝑛− 1)
,

where 𝑛 is the number of nodes and 𝑚 is the number of edges in 𝐺.

Notes

The density is 0 for a graph without edges and 1 for a complete graph. The density of multigraphs can be higher
than 1.

Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1.

5.1.4 info

info(G, n=None)
Print short summary of information for the graph G or the node n.

Parameters

• G (Networkx graph) – A graph

• n (node (any hashable)) – A node in the graph G

5.1.5 create_empty_copy

create_empty_copy(G, with_nodes=True)
Return a copy of the graph G with all of the edges removed.

Parameters

• G (graph) – A NetworkX graph

• with_nodes (bool (default=True)) – Include nodes.

Notes

Graph, node, and edge data is not propagated to the new graph.

5.1.6 is_directed

is_directed(G)
Return True if graph is directed.

5.2 Nodes
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nodes(G) Return a copy of the graph nodes in a list.
number_of_nodes(G) Return the number of nodes in the graph.
nodes_iter(G) Return an iterator over the graph nodes.
all_neighbors(graph, node) Returns all of the neighbors of a node in the graph.
non_neighbors(graph, node) Returns the non-neighbors of the node in the graph.
common_neighbors(G, u, v) Return the common neighbors of two nodes in a graph.

5.2.1 nodes

nodes(G)
Return a copy of the graph nodes in a list.

5.2.2 number_of_nodes

number_of_nodes(G)
Return the number of nodes in the graph.

5.2.3 nodes_iter

nodes_iter(G)
Return an iterator over the graph nodes.

5.2.4 all_neighbors

all_neighbors(graph, node)
Returns all of the neighbors of a node in the graph.

If the graph is directed returns predecessors as well as successors.

Parameters

• graph (NetworkX graph) – Graph to find neighbors.

• node (node) – The node whose neighbors will be returned.

Returns neighbors – Iterator of neighbors

Return type iterator

5.2.5 non_neighbors

non_neighbors(graph, node)
Returns the non-neighbors of the node in the graph.

Parameters

• graph (NetworkX graph) – Graph to find neighbors.

• node (node) – The node whose neighbors will be returned.

Returns non_neighbors – Iterator of nodes in the graph that are not neighbors of the node.

Return type iterator
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5.2.6 common_neighbors

common_neighbors(G, u, v)
Return the common neighbors of two nodes in a graph.

Parameters

• G (graph) – A NetworkX undirected graph.

• v (u,) – Nodes in the graph.

Returns cnbors – Iterator of common neighbors of u and v in the graph.

Return type iterator

Raises NetworkXError – If u or v is not a node in the graph.

Examples

>>> G = nx.complete_graph(5)
>>> sorted(nx.common_neighbors(G, 0, 1))
[2, 3, 4]

5.3 Edges

edges(G[, nbunch]) Return list of edges incident to nodes in nbunch.
number_of_edges(G) Return the number of edges in the graph.
edges_iter(G[, nbunch]) Return iterator over edges incident to nodes in nbunch.
non_edges(graph) Returns the non-existent edges in the graph.

5.3.1 edges

edges(G, nbunch=None)
Return list of edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges

5.3.2 number_of_edges

number_of_edges(G)
Return the number of edges in the graph.

5.3.3 edges_iter

edges_iter(G, nbunch=None)
Return iterator over edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges
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5.3.4 non_edges

non_edges(graph)
Returns the non-existent edges in the graph.

Parameters graph (NetworkX graph.) – Graph to find non-existent edges.

Returns non_edges – Iterator of edges that are not in the graph.

Return type iterator

5.4 Attributes

set_node_attributes(G, name, values) Set node attributes from dictionary of nodes and values
get_node_attributes(G, name) Get node attributes from graph
set_edge_attributes(G, name, values) Set edge attributes from dictionary of edge tuples and values.
get_edge_attributes(G, name) Get edge attributes from graph

5.4.1 set_node_attributes

set_node_attributes(G, name, values)
Set node attributes from dictionary of nodes and values

Parameters

• G (NetworkX Graph) –

• name (string) – Attribute name

• values (dict) – Dictionary of attribute values keyed by node. If 𝑣𝑎𝑙𝑢𝑒𝑠 is not a dic-
tionary, then it is treated as a single attribute value that is then applied to every node in
𝐺.

Examples

>>> G = nx.path_graph(3)
>>> bb = nx.betweenness_centrality(G)
>>> nx.set_node_attributes(G, 'betweenness', bb)
>>> G.node[1]['betweenness']
1.0

5.4.2 get_node_attributes

get_node_attributes(G, name)
Get node attributes from graph

Parameters

• G (NetworkX Graph) –

• name (string) – Attribute name

Returns

Return type Dictionary of attributes keyed by node.
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Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([1,2,3],color='red')
>>> color=nx.get_node_attributes(G,'color')
>>> color[1]
'red'

5.4.3 set_edge_attributes

set_edge_attributes(G, name, values)
Set edge attributes from dictionary of edge tuples and values.

Parameters

• G (NetworkX Graph) –

• name (string) – Attribute name

• values (dict) – Dictionary of attribute values keyed by edge (tuple). For multigraphs,
the keys tuples must be of the form (u, v, key). For non-multigraphs, the keys must be tuples
of the form (u, v). If 𝑣𝑎𝑙𝑢𝑒𝑠 is not a dictionary, then it is treated as a single attribute value
that is then applied to every edge in 𝐺.

Examples

>>> G = nx.path_graph(3)
>>> bb = nx.edge_betweenness_centrality(G, normalized=False)
>>> nx.set_edge_attributes(G, 'betweenness', bb)
>>> G[1][2]['betweenness']
2.0

5.4.4 get_edge_attributes

get_edge_attributes(G, name)
Get edge attributes from graph

Parameters

• G (NetworkX Graph) –

• name (string) – Attribute name

Returns

• Dictionary of attributes keyed by edge. For (di)graphs, the keys are

• 2-tuples of the form ((u,v). For multi(di)graphs, the keys are 3-tuples of )

• the form ((u, v, key).)

Examples
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>>> G=nx.Graph()
>>> G.add_path([1,2,3],color='red')
>>> color=nx.get_edge_attributes(G,'color')
>>> color[(1,2)]
'red'

5.5 Freezing graph structure

freeze(G) Modify graph to prevent further change by adding or removing nodes or edges.
is_frozen(G) Return True if graph is frozen.

5.5.1 freeze

freeze(G)
Modify graph to prevent further change by adding or removing nodes or edges.

Node and edge data can still be modified.

Parameters G (graph) – A NetworkX graph

Examples

>>> G=nx.Graph()
>>> G.add_path([0,1,2,3])
>>> G=nx.freeze(G)
>>> try:
... G.add_edge(4,5)
... except nx.NetworkXError as e:
... print(str(e))
Frozen graph can't be modified

Notes

To “unfreeze” a graph you must make a copy by creating a new graph object:

>>> graph = nx.path_graph(4)
>>> frozen_graph = nx.freeze(graph)
>>> unfrozen_graph = nx.Graph(frozen_graph)
>>> nx.is_frozen(unfrozen_graph)
False

See also:

is_frozen()

5.5.2 is_frozen

is_frozen(G)
Return True if graph is frozen.

Parameters G (graph) – A NetworkX graph
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See also:

freeze()
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CHAPTER 6

Graph generators

6.1 Atlas

Generators for the small graph atlas.

See “An Atlas of Graphs” by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998.

Because of its size, this module is not imported by default.

graph_atlas_g() Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas.

6.1.1 graph_atlas_g

graph_atlas_g()
Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas. G0,G1,...,G1252 are all graphs with
up to 7 nodes.

The graphs are listed:

1. in increasing order of number of nodes;

2. for a fixed number of nodes, in increasing order of the number of edges;

3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example 111223
< 112222;

4. for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for GAG=graph_atlas_g(), then G123=GAG[123] and G[0]=empty_graph(0)

6.2 Classic

Generators for some classic graphs.

The typical graph generator is called as follows:

>>> G=nx.complete_graph(100)

returning the complete graph on n nodes labeled 0,..,99 as a simple graph. Except for empty_graph, all the generators
in this module return a Graph class (i.e. a simple, undirected graph).
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balanced_tree(r, h[, create_using]) Return the perfectly balanced r-tree of height h.
barbell_graph(m1, m2[, create_using]) Return the Barbell Graph: two complete graphs connected by a path.
complete_graph(n[, create_using]) Return the complete graph K_n with n nodes.
complete_multipartite_graph(*block_sizes) Returns the complete multipartite graph with the specified block sizes.
circular_ladder_graph(n[, create_using]) Return the circular ladder graph CL_n of length n.
cycle_graph(n[, create_using]) Return the cycle graph C_n over n nodes.
dorogovtsev_goltsev_mendes_graph(n[, ...]) Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.
empty_graph([n, create_using]) Return the empty graph with n nodes and zero edges.
grid_2d_graph(m, n[, periodic, create_using]) Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors.
grid_graph(dim[, periodic]) Return the n-dimensional grid graph.
hypercube_graph(n) Return the n-dimensional hypercube.
ladder_graph(n[, create_using]) Return the Ladder graph of length n.
lollipop_graph(m, n[, create_using]) Return the Lollipop Graph; 𝐾𝑚 connected to 𝑃𝑛.
null_graph([create_using]) Return the Null graph with no nodes or edges.
path_graph(n[, create_using]) Return the Path graph P_n of n nodes linearly connected by n-1 edges.
star_graph(n[, create_using]) Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.
trivial_graph([create_using]) Return the Trivial graph with one node (with integer label 0) and no edges.
wheel_graph(n[, create_using]) Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

6.2.1 balanced_tree

balanced_tree(r, h, create_using=None)
Return the perfectly balanced r-tree of height h.

Parameters

• r (int) – Branching factor of the tree

• h (int) – Height of the tree

• create_using (NetworkX graph type, optional) – Use specified type to con-
struct graph (default = networkx.Graph)

Returns G – A tree with n nodes

Return type networkx Graph

Notes

This is the rooted tree where all leaves are at distance h from the root. The root has degree r and all other internal
nodes have degree r+1.

Node labels are the integers 0 (the root) up to number_of_nodes - 1.

Also refered to as a complete r-ary tree.

6.2.2 barbell_graph

barbell_graph(m1, m2, create_using=None)
Return the Barbell Graph: two complete graphs connected by a path.

For m1 > 1 and m2 >= 0.

Two identical complete graphs K_{m1} form the left and right bells, and are connected by a path P_{m2}.
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The 2*m1+m2 nodes are numbered 0,...,m1-1 for the left barbell, m1,...,m1+m2-1 for the path, and
m1+m2,...,2*m1+m2-1 for the right barbell.

The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2). If m2=0, this is merely two
complete graphs joined together.

This graph is an extremal example in David Aldous and Jim Fill’s etext on Random Walks on Graphs.

6.2.3 complete_graph

complete_graph(n, create_using=None)
Return the complete graph K_n with n nodes.

Node labels are the integers 0 to n-1.

6.2.4 complete_multipartite_graph

complete_multipartite_graph(*block_sizes)
Returns the complete multipartite graph with the specified block sizes.

Parameters block_sizes (tuple of integers) – The number of vertices in each block of
the multipartite graph. The length of this tuple is the number of blocks.

Returns

G –

Returns the complete multipartite graph with the specified block sizes.

For each node, the node attribute ’block’ is an integer indicating which block contains the
node.

Return type NetworkX Graph

Examples

Creating a complete tripartite graph, with blocks of one, two, and three vertices, respectively.

>>> import networkx as nx
>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.node[u]['block'] for u in G]
[0, 1, 1, 2, 2, 2]
>>> G.edges(0)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> G.edges(2)
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> G.edges(4)
[(4, 0), (4, 1), (4, 2)]

Notes

This function generalizes several other graph generator functions.

•If no block sizes are given, this returns the null graph.

•If a single block size n is given, this returns the empty graph on n nodes.
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•If two block sizes m and n are given, this returns the complete bipartite graph on m + n nodes.

•If block sizes 1 and n are given, this returns the star graph on n + 1 nodes.

See also:

complete_bipartite_graph()

6.2.5 circular_ladder_graph

circular_ladder_graph(n, create_using=None)
Return the circular ladder graph CL_n of length n.

CL_n consists of two concentric n-cycles in which each of the n pairs of concentric nodes are joined by an edge.

Node labels are the integers 0 to n-1

6.2.6 cycle_graph

cycle_graph(n, create_using=None)
Return the cycle graph C_n over n nodes.

C_n is the n-path with two end-nodes connected.

Node labels are the integers 0 to n-1 If create_using is a DiGraph, the direction is in increasing order.

6.2.7 dorogovtsev_goltsev_mendes_graph

dorogovtsev_goltsev_mendes_graph(n, create_using=None)
Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

6.2.8 empty_graph

empty_graph(n=0, create_using=None)
Return the empty graph with n nodes and zero edges.

Node labels are the integers 0 to n-1

For example: >>> G=nx.empty_graph(10) >>> G.number_of_nodes() 10 >>> G.number_of_edges() 0

The variable create_using should point to a “graph”-like object that will be cleaned (nodes and edges will
be removed) and refitted as an empty “graph” with n nodes with integer labels. This capability is useful for
specifying the class-nature of the resulting empty “graph” (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

The variable create_using has two main uses: Firstly, the variable create_using can be used to create an empty
digraph, network,etc. For example,

>>> n=10
>>> G=nx.empty_graph(n,create_using=nx.DiGraph())

will create an empty digraph on n nodes.

Secondly, one can pass an existing graph (digraph, pseudograph, etc.) via create_using. For example, if G is
an existing graph (resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G) will empty G (i.e.
delete all nodes and edges using G.clear() in base) and then add n nodes and zero edges, and return the modified
graph (resp. digraph, pseudograph, etc.).
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See also create_empty_copy(G).

6.2.9 grid_2d_graph

grid_2d_graph(m, n, periodic=False, create_using=None)
Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors. Optional argument peri-
odic=True will connect boundary nodes via periodic boundary conditions.

6.2.10 grid_graph

grid_graph(dim, periodic=False)
Return the n-dimensional grid graph.

The dimension is the length of the list ‘dim’ and the size in each dimension is the value of the list element.

E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

6.2.11 hypercube_graph

hypercube_graph(n)
Return the n-dimensional hypercube.

Node labels are the integers 0 to 2**n - 1.

6.2.12 ladder_graph

ladder_graph(n, create_using=None)
Return the Ladder graph of length n.

This is two rows of n nodes, with each pair connected by a single edge.

Node labels are the integers 0 to 2*n - 1.

6.2.13 lollipop_graph

lollipop_graph(m, n, create_using=None)
Return the Lollipop Graph; 𝐾𝑚 connected to 𝑃𝑛.

This is the Barbell Graph without the right barbell.

For m>1 and n>=0, the complete graph K_m is connected to the path P_n. The resulting m+n nodes are labelled
0,...,m-1 for the complete graph and m,...,m+n-1 for the path. The 2 subgraphs are joined via the edge (m-1,m).
If n=0, this is merely a complete graph.

Node labels are the integers 0 to number_of_nodes - 1.

(This graph is an extremal example in David Aldous and Jim Fill’s etext on Random Walks on Graphs.)
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6.2.14 null_graph

null_graph(create_using=None)
Return the Null graph with no nodes or edges.

See empty_graph for the use of create_using.

6.2.15 path_graph

path_graph(n, create_using=None)
Return the Path graph P_n of n nodes linearly connected by n-1 edges.

Node labels are the integers 0 to n - 1. If create_using is a DiGraph then the edges are directed in increasing
order.

6.2.16 star_graph

star_graph(n, create_using=None)
Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.

Node labels are the integers 0 to n.

6.2.17 trivial_graph

trivial_graph(create_using=None)
Return the Trivial graph with one node (with integer label 0) and no edges.

6.2.18 wheel_graph

wheel_graph(n, create_using=None)
Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

Node labels are the integers 0 to n - 1.

6.3 Expanders

Provides explicit constructions of expander graphs.

margulis_gabber_galil_graph(n[, create_using]) Return the Margulis-Gabber-Galil undirected MultiGraph on 𝑛2 nodes.
chordal_cycle_graph(p[, create_using]) Return the chordal cycle graph on 𝑝 nodes.

6.3.1 margulis_gabber_galil_graph

margulis_gabber_galil_graph(n, create_using=None)
Return the Margulis-Gabber-Galil undirected MultiGraph on 𝑛2 nodes.

The undirected MultiGraph is regular with degree 8. Nodes are integer pairs. The second-largest eigenvalue of
the adjacency matrix of the graph is at most 5

√
2, regardless of 𝑛.

Parameters

382 Chapter 6. Graph generators



NetworkX Reference, Release 1.11

• n (int) – Determines the number of nodes in the graph: 𝑛2.

• create_using (graph-like) – A graph-like object that receives the constructed
edges. If None, then a MultiGraph instance is used.

Returns G – The constructed undirected multigraph.

Return type graph

Raises NetworkXError – If the graph is directed or not a multigraph.

6.3.2 chordal_cycle_graph

chordal_cycle_graph(p, create_using=None)
Return the chordal cycle graph on 𝑝 nodes.

The returned graph is a cycle graph on 𝑝 nodes with chords joining each vertex 𝑥 to its inverse modulo 𝑝. This
graph is a (mildly explicit) 3-regular expander 1.

p must be a prime number.

Parameters

• p (a prime number) – The number of vertices in the graph. This also indicates where
the chordal edges in the cycle will be created.

• create_using (graph-like) – A graph-like object that receives the constructed
edges. If None, then a MultiGraph instance is used.

Returns G – The constructed undirected multigraph.

Return type graph

Raises NetworkXError

If the graph provided in create_using is directed or not a multigraph.

References

6.4 Small

Various small and named graphs, together with some compact generators.

make_small_graph(graph_description[, ...]) Return the small graph described by graph_description.
LCF_graph(n, shift_list, repeats[, create_using]) Return the cubic graph specified in LCF notation.
bull_graph([create_using]) Return the Bull graph.
chvatal_graph([create_using]) Return the Chvátal graph.
cubical_graph([create_using]) Return the 3-regular Platonic Cubical graph.
desargues_graph([create_using]) Return the Desargues graph.
diamond_graph([create_using]) Return the Diamond graph.
dodecahedral_graph([create_using]) Return the Platonic Dodecahedral graph.
frucht_graph([create_using]) Return the Frucht Graph.
heawood_graph([create_using]) Return the Heawood graph, a (3,6) cage.
house_graph([create_using]) Return the House graph (square with triangle on top).

Continued on next page

1 Theorem 4.4.2 in A. Lubotzky. “Discrete groups, expanding graphs and invariant measures”, volume 125 of Progress in Mathematics.
Birkhäuser Verlag, Basel, 1994.
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Table 6.4 – continued from previous page
house_x_graph([create_using]) Return the House graph with a cross inside the house square.
icosahedral_graph([create_using]) Return the Platonic Icosahedral graph.
krackhardt_kite_graph([create_using]) Return the Krackhardt Kite Social Network.
moebius_kantor_graph([create_using]) Return the Moebius-Kantor graph.
octahedral_graph([create_using]) Return the Platonic Octahedral graph.
pappus_graph() Return the Pappus graph.
petersen_graph([create_using]) Return the Petersen graph.
sedgewick_maze_graph([create_using]) Return a small maze with a cycle.
tetrahedral_graph([create_using]) Return the 3-regular Platonic Tetrahedral graph.
truncated_cube_graph([create_using]) Return the skeleton of the truncated cube.
truncated_tetrahedron_graph([create_using]) Return the skeleton of the truncated Platonic tetrahedron.
tutte_graph([create_using]) Return the Tutte graph.

6.4.1 make_small_graph

make_small_graph(graph_description, create_using=None)
Return the small graph described by graph_description.

graph_description is a list of the form [ltype,name,n,xlist]

Here ltype is one of “adjacencylist” or “edgelist”, name is the name of the graph and n the number of nodes.
This constructs a graph of n nodes with integer labels 0,..,n-1.

If ltype=”adjacencylist” then xlist is an adjacency list with exactly n entries, in with the j’th entry (which can be
empty) specifies the nodes connected to vertex j. e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]])

or, since we do not need to add edges twice,

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]])

If ltype=”edgelist” then xlist is an edge list written as [[v1,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in
the range 1,..,n e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]])

Use the create_using argument to choose the graph class/type.

6.4.2 LCF_graph

LCF_graph(n, shift_list, repeats, create_using=None)
Return the cubic graph specified in LCF notation.

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation used in the generation of various
cubic Hamiltonian graphs of high symmetry. See, for example, dodecahedral_graph, desargues_graph, hea-
wood_graph and pappus_graph below.

n (number of nodes) The starting graph is the n-cycle with nodes 0,...,n-1. (The null graph is returned if n <
0.)

shift_list = [s1,s2,..,sk], a list of integer shifts mod n,

repeats integer specifying the number of times that shifts in shift_list are successively applied to each v_current
in the n-cycle to generate an edge between v_current and v_current+shift mod n.
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For v1 cycling through the n-cycle a total of k*repeats with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n

The utility graph K_{3,3}

>>> G=nx.LCF_graph(6,[3,-3],3)

The Heawood graph

>>> G=nx.LCF_graph(14,[5,-5],7)

See http://mathworld.wolfram.com/LCFNotation.html for a description and references.

6.4.3 bull_graph

bull_graph(create_using=None)
Return the Bull graph.

6.4.4 chvatal_graph

chvatal_graph(create_using=None)
Return the Chvátal graph.

6.4.5 cubical_graph

cubical_graph(create_using=None)
Return the 3-regular Platonic Cubical graph.

6.4.6 desargues_graph

desargues_graph(create_using=None)
Return the Desargues graph.

6.4.7 diamond_graph

diamond_graph(create_using=None)
Return the Diamond graph.

6.4.8 dodecahedral_graph

dodecahedral_graph(create_using=None)
Return the Platonic Dodecahedral graph.

6.4.9 frucht_graph

frucht_graph(create_using=None)
Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose automorphism group consists only of the identity element.
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6.4.10 heawood_graph

heawood_graph(create_using=None)
Return the Heawood graph, a (3,6) cage.

6.4.11 house_graph

house_graph(create_using=None)
Return the House graph (square with triangle on top).

6.4.12 house_x_graph

house_x_graph(create_using=None)
Return the House graph with a cross inside the house square.

6.4.13 icosahedral_graph

icosahedral_graph(create_using=None)
Return the Platonic Icosahedral graph.

6.4.14 krackhardt_kite_graph

krackhardt_kite_graph(create_using=None)
Return the Krackhardt Kite Social Network.

A 10 actor social network introduced by David Krackhardt to illustrate: degree, betweenness, centrality, close-
ness, etc. The traditional labeling is: Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7,
Heather=8, Ike=9, Jane=10.

6.4.15 moebius_kantor_graph

moebius_kantor_graph(create_using=None)
Return the Moebius-Kantor graph.

6.4.16 octahedral_graph

octahedral_graph(create_using=None)
Return the Platonic Octahedral graph.

6.4.17 pappus_graph

pappus_graph()
Return the Pappus graph.

6.4.18 petersen_graph

petersen_graph(create_using=None)
Return the Petersen graph.

386 Chapter 6. Graph generators



NetworkX Reference, Release 1.11

6.4.19 sedgewick_maze_graph

sedgewick_maze_graph(create_using=None)
Return a small maze with a cycle.

This is the maze used in Sedgewick,3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and
following. Nodes are numbered 0,..,7

6.4.20 tetrahedral_graph

tetrahedral_graph(create_using=None)
Return the 3-regular Platonic Tetrahedral graph.

6.4.21 truncated_cube_graph

truncated_cube_graph(create_using=None)
Return the skeleton of the truncated cube.

6.4.22 truncated_tetrahedron_graph

truncated_tetrahedron_graph(create_using=None)
Return the skeleton of the truncated Platonic tetrahedron.

6.4.23 tutte_graph

tutte_graph(create_using=None)
Return the Tutte graph.

6.5 Random Graphs

Generators for random graphs.

fast_gnp_random_graph(n, p[, seed, directed]) Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.
gnp_random_graph(n, p[, seed, directed]) Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.
dense_gnm_random_graph(n, m[, seed]) Returns a 𝐺𝑛,𝑚 random graph.
gnm_random_graph(n, m[, seed, directed]) Returns a 𝐺𝑛,𝑚 random graph.
erdos_renyi_graph(n, p[, seed, directed]) Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.
binomial_graph(n, p[, seed, directed]) Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.
newman_watts_strogatz_graph(n, k, p[, seed]) Return a Newman–Watts–Strogatz small-world graph.
watts_strogatz_graph(n, k, p[, seed]) Return a Watts–Strogatz small-world graph.
connected_watts_strogatz_graph(n, k, p[, ...]) Returns a connected Watts–Strogatz small-world graph.
random_regular_graph(d, n[, seed]) Returns a random d-regular graph on n nodes.
barabasi_albert_graph(n, m[, seed]) Returns a random graph according to the Barabási–Albert preferential attachment model.
powerlaw_cluster_graph(n, m, p[, seed]) Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering.
duplication_divergence_graph(n, p[, seed]) Returns an undirected graph using the duplication-divergence model.
random_lobster(n, p1, p2[, seed]) Returns a random lobster graph.
random_shell_graph(constructor[, seed]) Returns a random shell graph for the constructor given.
random_powerlaw_tree(n[, gamma, seed, tries]) Returns a tree with a power law degree distribution.

Continued on next page
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Table 6.5 – continued from previous page
random_powerlaw_tree_sequence(n[, gamma, ...]) Returns a degree sequence for a tree with a power law distribution.

6.5.1 fast_gnp_random_graph

fast_gnp_random_graph(n, p, seed=None, directed=False)
Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.

Parameters

• n (int) – The number of nodes.

• p (float) – Probability for edge creation.

• seed (int, optional) – Seed for random number generator (default=None).

• directed (bool, optional (default=False)) – If True, this function returns
a directed graph.

Notes

The 𝐺𝑛,𝑝 graph algorithm chooses each of the [𝑛(𝑛− 1)]/2 (undirected) or 𝑛(𝑛− 1) (directed) possible edges
with probability 𝑝.

This algorithm runs in 𝑂(𝑛 + 𝑚) time, where 𝑚 is the expected number of edges, which equals 𝑝𝑛(𝑛 − 1)/2.
This should be faster than gnp_random_graph() when 𝑝 is small and the expected number of edges is small
(that is, the graph is sparse).

See also:

gnp_random_graph()

References

6.5.2 gnp_random_graph

gnp_random_graph(n, p, seed=None, directed=False)
Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.

The 𝐺𝑛,𝑝 model chooses each of the possible edges with probability p.

The functions binomial_graph() and erdos_renyi_graph() are aliases of this function.

Parameters

• n (int) – The number of nodes.

• p (float) – Probability for edge creation.

• seed (int, optional) – Seed for random number generator (default=None).

• directed (bool, optional (default=False)) – If True, this function returns
a directed graph.

See also:

fast_gnp_random_graph()
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Notes

This algorithm runs in 𝑂(𝑛2) time. For sparse graphs (that is, for small values of 𝑝),
fast_gnp_random_graph() is a faster algorithm.

References

6.5.3 dense_gnm_random_graph

dense_gnm_random_graph(n, m, seed=None)
Returns a 𝐺𝑛,𝑚 random graph.

In the 𝐺𝑛,𝑚 model, a graph is chosen uniformly at random from the set of all graphs with 𝑛 nodes and 𝑚 edges.

This algorithm should be faster than gnm_random_graph() for dense graphs.

Parameters

• n (int) – The number of nodes.

• m (int) – The number of edges.

• seed (int, optional) – Seed for random number generator (default=None).

See also:

gnm_random_graph()

Notes

Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth’s Algorithm S (Selection sampling technique),
in section 3.4.2 of 1.

References

6.5.4 gnm_random_graph

gnm_random_graph(n, m, seed=None, directed=False)
Returns a 𝐺𝑛,𝑚 random graph.

In the 𝐺𝑛,𝑚 model, a graph is chosen uniformly at random from the set of all graphs with 𝑛 nodes and 𝑚 edges.

This algorithm should be faster than dense_gnm_random_graph() for sparse graphs.

Parameters

• n (int) – The number of nodes.

• m (int) – The number of edges.

• seed (int, optional) – Seed for random number generator (default=None).

• directed (bool, optional (default=False)) – If True return a directed graph

See also:

dense_gnm_random_graph()

1 Donald E. Knuth, The Art of Computer Programming, Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
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6.5.5 erdos_renyi_graph

erdos_renyi_graph(n, p, seed=None, directed=False)
Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.

The 𝐺𝑛,𝑝 model chooses each of the possible edges with probability p.

The functions binomial_graph() and erdos_renyi_graph() are aliases of this function.

Parameters

• n (int) – The number of nodes.

• p (float) – Probability for edge creation.

• seed (int, optional) – Seed for random number generator (default=None).

• directed (bool, optional (default=False)) – If True, this function returns
a directed graph.

See also:

fast_gnp_random_graph()

Notes

This algorithm runs in 𝑂(𝑛2) time. For sparse graphs (that is, for small values of 𝑝),
fast_gnp_random_graph() is a faster algorithm.

References

6.5.6 binomial_graph

binomial_graph(n, p, seed=None, directed=False)
Returns a 𝐺𝑛,𝑝 random graph, also known as an Erdős-Rényi graph or a binomial graph.

The 𝐺𝑛,𝑝 model chooses each of the possible edges with probability p.

The functions binomial_graph() and erdos_renyi_graph() are aliases of this function.

Parameters

• n (int) – The number of nodes.

• p (float) – Probability for edge creation.

• seed (int, optional) – Seed for random number generator (default=None).

• directed (bool, optional (default=False)) – If True, this function returns
a directed graph.

See also:

fast_gnp_random_graph()

Notes

This algorithm runs in 𝑂(𝑛2) time. For sparse graphs (that is, for small values of 𝑝),
fast_gnp_random_graph() is a faster algorithm.
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References

6.5.7 newman_watts_strogatz_graph

newman_watts_strogatz_graph(n, k, p, seed=None)
Return a Newman–Watts–Strogatz small-world graph.

Parameters

• n (int) – The number of nodes.

• k (int) – Each node is joined with its k nearest neighbors in a ring topology.

• p (float) – The probability of adding a new edge for each edge.

• seed (int, optional) – The seed for the random number generator (the default is
None).

Notes

First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors (or k - 1
neighbors if k is odd). Then shortcuts are created by adding new edges as follows: for each edge (u, v) in the
underlying “n-ring with k nearest neighbors” with probability p add a new edge (u, w)with randomly-chosen
existing node w. In contrast with watts_strogatz_graph(), no edges are removed.

See also:

watts_strogatz_graph()

References

6.5.8 watts_strogatz_graph

watts_strogatz_graph(n, k, p, seed=None)
Return a Watts–Strogatz small-world graph.

Parameters

• n (int) – The number of nodes

• k (int) – Each node is joined with its k nearest neighbors in a ring topology.

• p (float) – The probability of rewiring each edge

• seed (int, optional) – Seed for random number generator (default=None)

See also:

newman_watts_strogatz_graph(), connected_watts_strogatz_graph()

Notes

First create a ring over n nodes. Then each node in the ring is joined to its k nearest neighbors (or k - 1
neighbors if k is odd). Then shortcuts are created by replacing some edges as follows: for each edge (u, v)
in the underlying “n-ring with k nearest neighbors” with probability p replace it with a new edge (u, w) with
uniformly random choice of existing node w.
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In contrast with newman_watts_strogatz_graph(), the random rewiring does not in-
crease the number of edges. The rewired graph is not guaranteed to be connected as in
connected_watts_strogatz_graph().

References

6.5.9 connected_watts_strogatz_graph

connected_watts_strogatz_graph(n, k, p, tries=100, seed=None)
Returns a connected Watts–Strogatz small-world graph.

Attempts to generate a connected graph by repeated generation of Watts–Strogatz small-world graphs. An
exception is raised if the maximum number of tries is exceeded.

Parameters

• n (int) – The number of nodes

• k (int) – Each node is joined with its k nearest neighbors in a ring topology.

• p (float) – The probability of rewiring each edge

• tries (int) – Number of attempts to generate a connected graph.

• seed (int, optional) – The seed for random number generator.

See also:

newman_watts_strogatz_graph(), watts_strogatz_graph()

6.5.10 random_regular_graph

random_regular_graph(d, n, seed=None)
Returns a random d-regular graph on n nodes.

The resulting graph has no self-loops or parallel edges.

Parameters

• d (int) – The degree of each node.

• n (integer) – The number of nodes. The value of n * d must be even.

• seed (hashable object) – The seed for random number generator.

Notes

The nodes are numbered from 0 to n - 1.

Kim and Vu’s paper 2 shows that this algorithm samples in an asymptotically uniform way from the space of
random graphs when 𝑑 = 𝑂(𝑛1/3−𝜖).

Raises NetworkXError – If n * d is odd or d is greater than or equal to n.

2 Jeong Han Kim and Van H. Vu, Generating random regular graphs, Proceedings of the thirty-fifth ACM symposium on Theory of computing,
San Diego, CA, USA, pp 213–222, 2003. http://portal.acm.org/citation.cfm?id=780542.780576
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References

6.5.11 barabasi_albert_graph

barabasi_albert_graph(n, m, seed=None)
Returns a random graph according to the Barabási–Albert preferential attachment model.

A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to existing
nodes with high degree.

Parameters

• n (int) – Number of nodes

• m (int) – Number of edges to attach from a new node to existing nodes

• seed (int, optional) – Seed for random number generator (default=None).

Returns G

Return type Graph

Raises NetworkXError – If m does not satisfy 1 <= m < n.

References

6.5.12 powerlaw_cluster_graph

powerlaw_cluster_graph(n, m, p, seed=None)
Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average
clustering.

Parameters

• n (int) – the number of nodes

• m (int) – the number of random edges to add for each new node

• p (float,) – Probability of adding a triangle after adding a random edge

• seed (int, optional) – Seed for random number generator (default=None).

Notes

The average clustering has a hard time getting above a certain cutoff that depends on m. This cutoff is often
quite low. The transitivity (fraction of triangles to possible triangles) seems to decrease with network size.

It is essentially the Barabási–Albert (BA) growth model with an extra step that each random edge is followed
by a chance of making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on BA in the sense that it enables a higher average clustering to be attained if desired.

It seems possible to have a disconnected graph with this algorithm since the initial m nodes may not be all linked
to a new node on the first iteration like the BA model.

Raises NetworkXError – If m does not satisfy 1 <= m <= n or p does not satisfy 0 <= p
<= 1.
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References

6.5.13 duplication_divergence_graph

duplication_divergence_graph(n, p, seed=None)
Returns an undirected graph using the duplication-divergence model.

A graph of n nodes is created by duplicating the initial nodes and retaining edges incident to the original nodes
with a retention probability p.

Parameters

• n (int) – The desired number of nodes in the graph.

• p (float) – The probability for retaining the edge of the replicated node.

• seed (int, optional) – A seed for the random number generator of random (de-
fault=None).

Returns G

Return type Graph

Raises NetworkXError – If 𝑝 is not a valid probability. If 𝑛 is less than 2.

References

6.5.14 random_lobster

random_lobster(n, p1, p2, seed=None)
Returns a random lobster graph.

A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes. A caterpillar is a tree that reduces to
a path graph when pruning all leaf nodes; setting p2 to zero produces a caterillar.

Parameters

• n (int) – The expected number of nodes in the backbone

• p1 (float) – Probability of adding an edge to the backbone

• p2 (float) – Probability of adding an edge one level beyond backbone

• seed (int, optional) – Seed for random number generator (default=None).

6.5.15 random_shell_graph

random_shell_graph(constructor, seed=None)
Returns a random shell graph for the constructor given.

Parameters

• constructor (list of three-tuples) – Represents the parameters for a shell,
starting at the center shell. Each element of the list must be of the form (n, m, d),
where n is the number of nodes in the shell, m is the number of edges in the shell, and d
is the ratio of inter-shell (next) edges to intra-shell edges. If d is zero, there will be no
intra-shell edges, and if d is one there will be all possible intra-shell edges.

• seed (int, optional) – Seed for random number generator (default=None).
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Examples

>>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
>>> G = nx.random_shell_graph(constructor)

6.5.16 random_powerlaw_tree

random_powerlaw_tree(n, gamma=3, seed=None, tries=100)
Returns a tree with a power law degree distribution.

Parameters

• n (int) – The number of nodes.

• gamma (float) – Exponent of the power law.

• seed (int, optional) – Seed for random number generator (default=None).

• tries (int) – Number of attempts to adjust the sequence to make it a tree.

Raises NetworkXError – If no valid sequence is found within the maximum number of attempts.

Notes

A trial power law degree sequence is chosen and then elements are swapped with new elements from a powerlaw
distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller
than the number of nodes).

6.5.17 random_powerlaw_tree_sequence

random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100)
Returns a degree sequence for a tree with a power law distribution.

Parameters

• n (int,) – The number of nodes.

• gamma (float) – Exponent of the power law.

• seed (int, optional) – Seed for random number generator (default=None).

• tries (int) – Number of attempts to adjust the sequence to make it a tree.

Raises NetworkXError – If no valid sequence is found within the maximum number of attempts.

Notes

A trial power law degree sequence is chosen and then elements are swapped with new elements from a power
law distribution until the sequence makes a tree (by checking, for example, that the number of edges is one
smaller than the number of nodes).

6.6 Degree Sequence

Generate graphs with a given degree sequence or expected degree sequence.
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configuration_model(deg_sequence[, ...]) Return a random graph with the given degree sequence.
directed_configuration_model(...[, ...]) Return a directed_random graph with the given degree sequences.
expected_degree_graph(w[, seed, selfloops]) Return a random graph with given expected degrees.
havel_hakimi_graph(deg_sequence[, create_using]) Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.
directed_havel_hakimi_graph(in_deg_sequence, ...) Return a directed graph with the given degree sequences.
degree_sequence_tree(deg_sequence[, ...]) Make a tree for the given degree sequence.
random_degree_sequence_graph(sequence[, ...]) Return a simple random graph with the given degree sequence.

6.6.1 configuration_model

configuration_model(deg_sequence, create_using=None, seed=None)
Return a random graph with the given degree sequence.

The configuration model generates a random pseudograph (graph with parallel edges and self loops) by ran-
domly assigning edges to match the given degree sequence.

Parameters

• deg_sequence (list of integers) – Each list entry corresponds to the degree of
a node.

• create_using (graph, optional (default MultiGraph)) – Return graph
of this type. The instance will be cleared.

• seed (hashable object, optional) – Seed for random number generator.

Returns G – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an
index corresponding to the position in deg_sequence.

Return type MultiGraph

Raises NetworkXError – If the degree sequence does not have an even sum.

See also:

is_valid_degree_sequence()

Notes

As described by Newman 1.

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns
graphs with self loops and parallel edges. An exception is raised if the degree sequence does not have an even
sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the
self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree
sequence specified.

The density of self-loops and parallel edges tends to decrease as the number of nodes increases. However,
typically the number of self-loops will approach a Poisson distribution with a nonzero mean, and similarly for
the number of parallel edges. Consider a node with k stubs. The probability of being joined to another stub of
the same node is basically (k-1)/N where k is the degree and N is the number of nodes. So the probability of
a self-loop scales like c/N for some constant c. As N grows, this means we expect c self-loops. Similarly for
parallel edges.

1 M.E.J. Newman, “The structure and function of complex networks”, SIAM REVIEW 45-2, pp 167-256, 2003.
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References

Examples

>>> from networkx.utils import powerlaw_sequence
>>> z=nx.utils.create_degree_sequence(100,powerlaw_sequence)
>>> G=nx.configuration_model(z)

To remove parallel edges:

>>> G=nx.Graph(G)

To remove self loops:

>>> G.remove_edges_from(G.selfloop_edges())

6.6.2 directed_configuration_model

directed_configuration_model(in_degree_sequence, out_degree_sequence, create_using=None,
seed=None)

Return a directed_random graph with the given degree sequences.

The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by
randomly assigning edges to match the given degree sequences.

Parameters

• in_degree_sequence (list of integers) – Each list entry corresponds to the
in-degree of a node.

• out_degree_sequence (list of integers) – Each list entry corresponds to the
out-degree of a node.

• create_using (graph, optional (default MultiDiGraph)) – Return
graph of this type. The instance will be cleared.

• seed (hashable object, optional) – Seed for random number generator.

Returns G – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an
index corresponding to the position in deg_sequence.

Return type MultiDiGraph

Raises NetworkXError – If the degree sequences do not have the same sum.

See also:

configuration_model()

Notes

Algorithm as described by Newman 1.

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns
graphs with self loops and parallel edges. An exception is raised if the degree sequences does not have the same
sum.

1 Newman, M. E. J. and Strogatz, S. H. and Watts, D. J. Random graphs with arbitrary degree distributions and their applications Phys. Rev. E,
64, 026118 (2001)
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This configuration model construction process can lead to duplicate edges and loops. You can remove the
self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree
sequence specified. This “finite-size effect” decreases as the size of the graph increases.

References

Examples

>>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph
>>> din=list(D.in_degree().values())
>>> dout=list(D.out_degree().values())
>>> din.append(1)
>>> dout[0]=2
>>> D=nx.directed_configuration_model(din,dout)

To remove parallel edges:

>>> D=nx.DiGraph(D)

To remove self loops:

>>> D.remove_edges_from(D.selfloop_edges())

6.6.3 expected_degree_graph

expected_degree_graph(w, seed=None, selfloops=True)
Return a random graph with given expected degrees.

Given a sequence of expected degrees 𝑊 = (𝑤0, 𝑤1, . . . , 𝑤𝑛−1) of length 𝑛 this algorithm assigns an edge
between node 𝑢 and node 𝑣 with probability

𝑝𝑢𝑣 =
𝑤𝑢𝑤𝑣∑︀

𝑘 𝑤𝑘
.

Parameters

• w (list) – The list of expected degrees.

• selfloops (bool (default=True)) – Set to False to remove the possibility of self-
loop edges.

• seed (hashable object, optional) – The seed for the random number generator.

Returns

Return type Graph

Examples

>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)
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Notes

The nodes have integer labels corresponding to index of expected degrees input sequence.

The complexity of this algorithm is 𝒪(𝑛 + 𝑚) where 𝑛 is the number of nodes and 𝑚 is the expected number
of edges.

The model in 1 includes the possibility of self-loop edges. Set selfloops=False to produce a graph without self
loops.

For finite graphs this model doesn’t produce exactly the given expected degree sequence. Instead the expected
degrees are as follows.

For the case without self loops (selfloops=False),

𝐸[𝑑𝑒𝑔(𝑢)] =
∑︁
𝑣 ̸=𝑢

𝑝𝑢𝑣 = 𝑤𝑢

(︂
1 − 𝑤𝑢∑︀

𝑘 𝑤𝑘

)︂
.

NetworkX uses the standard convention that a self-loop edge counts 2 in the degree of a node, so with self loops
(selfloops=True),

𝐸[𝑑𝑒𝑔(𝑢)] =
∑︁
𝑣 ̸=𝑢

𝑝𝑢𝑣 + 2𝑝𝑢𝑢 = 𝑤𝑢

(︂
1 +

𝑤𝑢∑︀
𝑘 𝑤𝑘

)︂
.

References

6.6.4 havel_hakimi_graph

havel_hakimi_graph(deg_sequence, create_using=None)
Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.

Parameters

• deg_sequence (list of integers) – Each integer corresponds to the degree of a
node (need not be sorted).

• create_using (graph, optional (default Graph)) – Return graph of this
type. The instance will be cleared. Directed graphs are not allowed.

Raises NetworkXException – For a non-graphical degree sequence (i.e. one not realizable by
some simple graph).

Notes

The Havel-Hakimi algorithm constructs a simple graph by successively connecting the node of highest degree
to other nodes of highest degree, resorting remaining nodes by degree, and repeating the process. The resulting
graph has a high degree-associativity. Nodes are labeled 1,.., len(deg_sequence), corresponding to their position
in deg_sequence.

The basic algorithm is from Hakimi 1 and was generalized by Kleitman and Wang 2.

1 Fan Chung and L. Lu, Connected components in random graphs with given expected degree sequences, Ann. Combinatorics, 6, pp. 125-145,
2002.

1 Hakimi S., On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I, Journal of SIAM, 10(3), pp. 496-506 (1962)
2 Kleitman D.J. and Wang D.L. Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1),

pp. 79-88 (1973)
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References

6.6.5 directed_havel_hakimi_graph

directed_havel_hakimi_graph(in_deg_sequence, out_deg_sequence, create_using=None)
Return a directed graph with the given degree sequences.

Parameters

• in_deg_sequence (list of integers) – Each list entry corresponds to the in-
degree of a node.

• out_deg_sequence (list of integers) – Each list entry corresponds to the out-
degree of a node.

• create_using (graph, optional (default DiGraph)) – Return graph of
this type. The instance will be cleared.

Returns G – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an
index corresponding to the position in deg_sequence

Return type DiGraph

Raises NetworkXError – If the degree sequences are not digraphical.

See also:

configuration_model()

Notes

Algorithm as described by Kleitman and Wang 1.

References

6.6.6 degree_sequence_tree

degree_sequence_tree(deg_sequence, create_using=None)
Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so the degree sequence must have len(deg_sequence)-sum(deg_sequence)/2=1

6.6.7 random_degree_sequence_graph

random_degree_sequence_graph(sequence, seed=None, tries=10)
Return a simple random graph with the given degree sequence.

If the maximum degree 𝑑𝑚 in the sequence is 𝑂(𝑚1/4) then the algorithm produces almost uniform random
graphs in 𝑂(𝑚𝑑𝑚) time where 𝑚 is the number of edges.

Parameters

• sequence (list of integers) – Sequence of degrees

• seed (hashable object, optional) – Seed for random number generator

1 D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1),
pp. 79-88 (1973)
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• tries (int, optional) – Maximum number of tries to create a graph

Returns G – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an
index corresponding to the position in the sequence.

Return type Graph

Raises

• NetworkXUnfeasible – If the degree sequence is not graphical.

• NetworkXError – If a graph is not produced in specified number of tries

See also:

is_valid_degree_sequence(), configuration_model()

Notes

The generator algorithm 1 is not guaranteed to produce a graph.

References

Examples

>>> sequence = [1, 2, 2, 3]
>>> G = nx.random_degree_sequence_graph(sequence)
>>> sorted(G.degree().values())
[1, 2, 2, 3]

6.7 Random Clustered

Generate graphs with given degree and triangle sequence.

random_clustered_graph(joint_degree_sequence) Generate a random graph with the given joint independent edge degree and triangle degree sequence.

6.7.1 random_clustered_graph

random_clustered_graph(joint_degree_sequence, create_using=None, seed=None)
Generate a random graph with the given joint independent edge degree and triangle degree sequence.

This uses a configuration model-like approach to generate a random graph (with parallel edges and self-loops)
by randomly assigning edges to match the given joint degree sequence.

The joint degree sequence is a list of pairs of integers of the form [(𝑑1,𝑖, 𝑑1,𝑡), . . . , (𝑑𝑛,𝑖, 𝑑𝑛,𝑡)]. According to
this list, vertex 𝑢 is a member of 𝑑𝑢,𝑡 triangles and has 𝑑𝑢,𝑖 other edges. The number 𝑑𝑢,𝑡 is the triangle degree
of 𝑢 and the number 𝑑𝑢,𝑖 is the independent edge degree.

Parameters
1 Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number

4, 860-910, DOI: 10.1007/s00453-009-9340-1
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• joint_degree_sequence (list of integer pairs) – Each list entry corre-
sponds to the independent edge degree and triangle degree of a node.

• create_using (graph, optional (default MultiGraph)) – Return graph
of this type. The instance will be cleared.

• seed (hashable object, optional) – The seed for the random number generator.

Returns G – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an
index corresponding to the position in deg_sequence.

Return type MultiGraph

Raises NetworkXError – If the independent edge degree sequence sum is not even or the triangle
degree sequence sum is not divisible by 3.

Notes

As described by Miller 1 (see also Newman 2 for an equivalent description).

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns
graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not
have an even sum or the triangle degree sequence sum is not divisible by 3.

This configuration model-like construction process can lead to duplicate edges and loops. You can remove the
self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree
sequence specified. This “finite-size effect” decreases as the size of the graph increases.

References

Examples

>>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
>>> G = nx.random_clustered_graph(deg)

To remove parallel edges:

>>> G = nx.Graph(G)

To remove self loops:

>>> G.remove_edges_from(G.selfloop_edges())

6.8 Directed

Generators for some directed graphs, including growing network (GN) graphs and scale-free graphs.

gn_graph(n[, kernel, create_using, seed]) Return the growing network (GN) digraph with n nodes.
gnr_graph(n, p[, create_using, seed]) Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p.
gnc_graph(n[, create_using, seed]) Return the growing network with copying (GNC) digraph with n nodes.
scale_free_graph(n[, alpha, beta, gamma, ...]) Returns a scale-free directed graph.

1 Joel C. Miller. “Percolation and epidemics in random clustered networks”. In: Physical review. E, Statistical, nonlinear, and soft matter
physics 80 (2 Part 1 August 2009).

2 M. E. J. Newman. “Random Graphs with Clustering”. In: Physical Review Letters 103 (5 July 2009)
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6.8.1 gn_graph

gn_graph(n, kernel=None, create_using=None, seed=None)
Return the growing network (GN) digraph with n nodes.

The GN graph is built by adding nodes one at a time with a link to one previously added node. The target node
for the link is chosen with probability based on degree. The default attachment kernel is a linear function of the
degree of a node.

The graph is always a (directed) tree.

Parameters

• n (int) – The number of nodes for the generated graph.

• kernel (function) – The attachment kernel.

• create_using (graph, optional (default DiGraph)) – Return graph of
this type. The instance will be cleared.

• seed (hashable object, optional) – The seed for the random number generator.

Examples

To create the undirected GN graph, use the to_directed() method:

>>> D = nx.gn_graph(10) # the GN graph
>>> G = D.to_undirected() # the undirected version

To specify an attachment kernel, use the kernel keyword argument:

>>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5

References

6.8.2 gnr_graph

gnr_graph(n, p, create_using=None, seed=None)
Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p.

The GNR graph is built by adding nodes one at a time with a link to one previously added node. The previous
target node is chosen uniformly at random. With probabiliy p the link is instead “redirected” to the successor
node of the target.

The graph is always a (directed) tree.

Parameters

• n (int) – The number of nodes for the generated graph.

• p (float) – The redirection probability.

• create_using (graph, optional (default DiGraph)) – Return graph of
this type. The instance will be cleared.

• seed (hashable object, optional) – The seed for the random number generator.
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Examples

To create the undirected GNR graph, use the to_directed() method:

>>> D = nx.gnr_graph(10, 0.5) # the GNR graph
>>> G = D.to_undirected() # the undirected version

References

6.8.3 gnc_graph

gnc_graph(n, create_using=None, seed=None)
Return the growing network with copying (GNC) digraph with n nodes.

The GNC graph is built by adding nodes one at a time with a link to one previously added node (chosen
uniformly at random) and to all of that node’s successors.

Parameters

• n (int) – The number of nodes for the generated graph.

• create_using (graph, optional (default DiGraph)) – Return graph of
this type. The instance will be cleared.

• seed (hashable object, optional) – The seed for the random number generator.

References

6.8.4 scale_free_graph

scale_free_graph(n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, delta_out=0, cre-
ate_using=None, seed=None)

Returns a scale-free directed graph.

Parameters

• n (integer) – Number of nodes in graph

• alpha (float) – Probability for adding a new node connected to an existing node chosen
randomly according to the in-degree distribution.

• beta (float) – Probability for adding an edge between two existing nodes. One existing
node is chosen randomly according the in-degree distribution and the other chosen randomly
according to the out-degree distribution.

• gamma (float) – Probability for adding a new node conecgted to an existing node chosen
randomly according to the out-degree distribution.

• delta_in (float) – Bias for choosing ndoes from in-degree distribution.

• delta_out (float) – Bias for choosing ndoes from out-degree distribution.

• create_using (graph, optional (default MultiDiGraph)) – Use this
graph instance to start the process (default=3-cycle).

• seed (integer, optional) – Seed for random number generator
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Examples

Create a scale-free graph on one hundred nodes:

>>> G = nx.scale_free_graph(100)

Notes

The sum of alpha, beta, and gamma must be 1.

References

6.9 Geometric

Generators for geometric graphs.

random_geometric_graph(n, radius[, dim, pos]) Returns a random geometric graph in the unit cube.
geographical_threshold_graph(n, theta[, ...]) Returns a geographical threshold graph.
waxman_graph(n[, alpha, beta, L, domain]) Return a Waxman random graph.
navigable_small_world_graph(n[, p, q, r, ...]) Return a navigable small-world graph.

6.9.1 random_geometric_graph

random_geometric_graph(n, radius, dim=2, pos=None)
Returns a random geometric graph in the unit cube.

The random geometric graph model places n nodes uniformly at random in the unit cube. Two nodes are joined
by an edge if the Euclidean distance between the nodes is at most radius.

Parameters

• n (int) – Number of nodes

• radius (float) – Distance threshold value

• dim (int, optional) – Dimension of graph

• pos (dict, optional) – A dictionary keyed by node with node positions as values.

Returns

Return type Graph

Examples

Create a random geometric graph on twenty nodes where nodes are joined by an edge if their distance is at most
0.1:

>>> G = nx.random_geometric_graph(20, 0.1)
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Notes

This algorithm currently only supports Euclidean distance.

This uses an 𝑂(𝑛2) algorithm to build the graph. A faster algorithm is possible using k-d trees.

The pos keyword argument can be used to specify node positions so you can create an arbitrary distribution
and domain for positions.

For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2:

>>> import random
>>> n = 20
>>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> G = nx.random_geometric_graph(n, 0.2, pos=p)

References

6.9.2 geographical_threshold_graph

geographical_threshold_graph(n, theta, alpha=2, dim=2, pos=None, weight=None)
Returns a geographical threshold graph.

The geographical threshold graph model places n nodes uniformly at random in a rectangular domain. Each
node 𝑢 is assigned a weight 𝑤𝑢. Two nodes 𝑢 and 𝑣 are joined by an edge if

𝑤𝑢 + 𝑤𝑣 ≥ 𝜃𝑟𝛼

where 𝑟 is the Euclidean distance between 𝑢 and 𝑣, and 𝜃, 𝛼 are parameters.

Parameters

• n (int) – Number of nodes

• theta (float) – Threshold value

• alpha (float, optional) – Exponent of distance function

• dim (int, optional) – Dimension of graph

• pos (dict) – Node positions as a dictionary of tuples keyed by node.

• weight (dict) – Node weights as a dictionary of numbers keyed by node.

Returns

Return type Graph

Examples

>>> G = nx.geographical_threshold_graph(20, 50)

Notes

If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution
with rate parameter 𝜆 = 1. To specify weights from a different distribution, use the weight keyword argument:
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>>> import random
>>> n = 20
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)

If node positions are not specified they are randomly assigned from the uniform distribution.

References

6.9.3 waxman_graph

waxman_graph(n, alpha=0.4, beta=0.1, L=None, domain=(0, 0, 1, 1))
Return a Waxman random graph.

The Waxman random graph model places n nodes uniformly at random in a rectangular domain. Each pair of
nodes at Euclidean distance 𝑑 is joined by an edge with probability

𝑝 = 𝛼 exp(−𝑑/𝛽𝐿).

This function implements both Waxman models, using the L keyword argument.

•Waxman-1: if L is not specified, it is set to be the maximum distance between any pair of nodes.

•Waxman-2: if L is specified, the distance between a pair of nodes is chosen uniformly at random from the
interval [0, 𝐿].

Parameters

• n (int) – Number of nodes

• alpha (float) – Model parameter

• beta (float) – Model parameter

• L (float, optional) – Maximum distance between nodes. If not specified, the actual
distance is calculated.

• domain (four-tuple of numbers, optional) – Domain size, given as a tuple
of the form (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥).

Returns G

Return type Graph

References

6.9.4 navigable_small_world_graph

navigable_small_world_graph(n, p=1, q=1, r=2, dim=2, seed=None)
Return a navigable small-world graph.

A navigable small-world graph is a directed grid with additional long-range connections that are chosen ran-
domly.

[...] we begin with a set of nodes [...] that are identified with the set of lattice points in an 𝑛𝑖𝑚𝑒𝑠𝑛
square, {(𝑖, 𝑗) : 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑗 ∈ {1, 2, . . . , 𝑛}}, and we define the lattice distance between
two nodes (𝑖, 𝑗) and (𝑘, 𝑙) to be the number of “lattice steps” separating them: 𝑑((𝑖, 𝑗), (𝑘, 𝑙)) = |𝑘−
𝑖|+ |𝑙− 𝑗|. For a universal constant 𝑝 ≥ 1, the node 𝑢 has a directed edge to every other node within
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lattice distance 𝑝 — these are its local contacts. For universal constants 𝑞 ≥ 0 and 𝑟 ≥ 0 we also
construct directed edges from 𝑢 to 𝑞 other nodes (the long-range contacts) using independent random
trials; the 𝑖‘𝑡ℎ𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑒𝑑𝑔𝑒𝑓𝑟𝑜𝑚‘𝑢 has endpoint 𝑣 with probability proportional to [𝑑(𝑢, 𝑣)]−𝑟.

—1

Parameters

• n (int) – The number of nodes.

• p (int) – The diameter of short range connections. Each node is joined with every other
node within this lattice distance.

• q (int) – The number of long-range connections for each node.

• r (float) – Exponent for decaying probability of connections. The probability of connect-
ing to a node at lattice distance 𝑑 is 1/𝑑𝑟.

• dim (int) – Dimension of grid

• seed (int, optional) – Seed for random number generator (default=None).

References

6.10 Line Graph

Functions for generating line graphs.

line_graph(G[, create_using]) Returns the line graph of the graph or digraph G.

6.10.1 line_graph

line_graph(G, create_using=None)
Returns the line graph of the graph or digraph G.

The line graph of a graph G has a node for each edge in G and an edge joining those nodes if the two edges in
G share a common node. For directed graphs, nodes are adjacent exactly when the edges they represent form a
directed path of length two.

The nodes of the line graph are 2-tuples of nodes in the original graph (or 3-tuples for multigraphs, with the key
of the edge as the third element).

For information about self-loops and more discussion, see the Notes section below.

Parameters G (graph) – A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph.

Returns L – The line graph of G.

Return type graph

Examples

1 J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.
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>>> import networkx as nx
>>> G = nx.star_graph(3)
>>> L = nx.line_graph(G)
>>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3
[[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]]

Notes

Graph, node, and edge data are not propagated to the new graph. For undirected graphs, the nodes in G must be
sortable, otherwise the constructed line graph may not be correct.

Self-loops in undirected graphs

For an undirected graph 𝐺 without multiple edges, each edge can be written as a set {𝑢, 𝑣}. Its line graph
𝐿 has the edges of 𝐺 as its nodes. If 𝑥 and 𝑦 are two nodes in 𝐿, then {𝑥, 𝑦} is an edge in 𝐿 if and only
if the intersection of 𝑥 and 𝑦 is nonempty. Thus, the set of all edges is determined by the set of all pairwise
intersections of edges in 𝐺.

Trivially, every edge in G would have a nonzero intersection with itself, and so every node in 𝐿 should have
a self-loop. This is not so interesting, and the original context of line graphs was with simple graphs, which
had no self-loops or multiple edges. The line graph was also meant to be a simple graph and thus, self-loops in
𝐿 are not part of the standard definition of a line graph. In a pairwise intersection matrix, this is analogous to
excluding the diagonal entries from the line graph definition.

Self-loops and multiple edges in 𝐺 add nodes to 𝐿 in a natural way, and do not require any fundamental changes
to the definition. It might be argued that the self-loops we excluded before should now be included. However,
the self-loops are still “trivial” in some sense and thus, are usually excluded.

Self-loops in directed graphs

For a directed graph 𝐺 without multiple edges, each edge can be written as a tuple (𝑢, 𝑣). Its line graph 𝐿 has
the edges of 𝐺 as its nodes. If 𝑥 and 𝑦 are two nodes in 𝐿, then (𝑥, 𝑦) is an edge in 𝐿 if and only if the tail of 𝑥
matches the head of 𝑦, for example, if 𝑥 = (𝑎, 𝑏) and 𝑦 = (𝑏, 𝑐) for some vertices 𝑎, 𝑏, and 𝑐 in 𝐺.

Due to the directed nature of the edges, it is no longer the case that every edge in 𝐺 should have a self-loop
in 𝐿. Now, the only time self-loops arise is if a node in 𝐺 itself has a self-loop. So such self-loops are no
longer “trivial” but instead, represent essential features of the topology of 𝐺. For this reason, the historical
development of line digraphs is such that self-loops are included. When the graph 𝐺 has multiple edges, once
again only superficial changes are required to the definition.

References

•Harary, Frank, and Norman, Robert Z., “Some properties of line digraphs”, Rend. Circ. Mat. Palermo, II.
Ser. 9 (1960), 161–168.

•Hemminger, R. L.; Beineke, L. W. (1978), “Line graphs and line digraphs”, in Beineke, L. W.; Wilson, R.
J., Selected Topics in Graph Theory, Academic Press Inc., pp. 271–305.

6.11 Ego Graph

Ego graph.

ego_graph(G, n[, radius, center, ...]) Returns induced subgraph of neighbors centered at node n within a given radius.
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6.11.1 ego_graph

ego_graph(G, n, radius=1, center=True, undirected=False, distance=None)
Returns induced subgraph of neighbors centered at node n within a given radius.

Parameters

• G (graph) – A NetworkX Graph or DiGraph

• n (node) – A single node

• radius (number, optional) – Include all neighbors of distance<=radius from n.

• center (bool, optional) – If False, do not include center node in graph

• undirected (bool, optional) – If True use both in- and out-neighbors of directed
graphs.

• distance (key, optional) – Use specified edge data key as distance. For example,
setting distance=’weight’ will use the edge weight to measure the distance from the node n.

Notes

For directed graphs D this produces the “out” neighborhood or successors. If you want the neighborhood of
predecessors first reverse the graph with D.reverse(). If you want both directions use the keyword argument
undirected=True.

Node, edge, and graph attributes are copied to the returned subgraph.

6.12 Stochastic

Functions for generating stochastic graphs from a given weighted directed graph.

stochastic_graph(G[, copy, weight]) Returns a right-stochastic representation of the directed graph G.

6.12.1 stochastic_graph

stochastic_graph(G, copy=True, weight=’weight’)
Returns a right-stochastic representation of the directed graph G.

A right-stochastic graph is a weighted digraph in which for each node, the sum of the weights of all the out-
edges of that node is 1. If the graph is already weighted (for example, via a ’weight’ edge attribute), the
reweighting takes that into account.

Parameters

• G (directed graph) – A DiGraph or MultiDiGraph.

• copy (boolean, optional) – If this is True, then this function returns a new instance
of networkx.Digraph. Otherwise, the original graph is modified in-place (and also
returned, for convenience).

• weight (edge attribute key (optional, default=’weight’)) – Edge
attribute key used for reading the existing weight and setting the new weight. If no at-
tribute with this key is found for an edge, then the edge weight is assumed to be 1. If an
edge has a weight, it must be a a positive number.
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6.13 Intersection

Generators for random intersection graphs.

uniform_random_intersection_graph(n, m, p[, ...]) Return a uniform random intersection graph.
k_random_intersection_graph(n, m, k) Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k).
general_random_intersection_graph(n, m, p) Return a random intersection graph with independent probabilities for connections between node and attribute sets.

6.13.1 uniform_random_intersection_graph

uniform_random_intersection_graph(n, m, p, seed=None)
Return a uniform random intersection graph.

Parameters

• n (int) – The number of nodes in the first bipartite set (nodes)

• m (int) – The number of nodes in the second bipartite set (attributes)

• p (float) – Probability of connecting nodes between bipartite sets

• seed (int, optional) – Seed for random number generator (default=None).

See also:

gnp_random_graph()

References

6.13.2 k_random_intersection_graph

k_random_intersection_graph(n, m, k)
Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k).

Parameters

• n (int) – The number of nodes in the first bipartite set (nodes)

• m (int) – The number of nodes in the second bipartite set (attributes)

• k (float) – Size of attribute set to assign to each node.

• seed (int, optional) – Seed for random number generator (default=None).

See also:

gnp_random_graph(), uniform_random_intersection_graph()

References

6.13.3 general_random_intersection_graph

general_random_intersection_graph(n, m, p)
Return a random intersection graph with independent probabilities for connections between node and attribute
sets.

Parameters
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• n (int) – The number of nodes in the first bipartite set (nodes)

• m (int) – The number of nodes in the second bipartite set (attributes)

• p (list of floats of length m) – Probabilities for connecting nodes to each at-
tribute

• seed (int, optional) – Seed for random number generator (default=None).

See also:

gnp_random_graph(), uniform_random_intersection_graph()

References

6.14 Social Networks

Famous social networks.

karate_club_graph() Return Zachary’s Karate Club graph.
davis_southern_women_graph() Return Davis Southern women social network.
florentine_families_graph() Return Florentine families graph.

6.14.1 karate_club_graph

karate_club_graph()
Return Zachary’s Karate Club graph.

Each node in the returned graph has a node attribute ’club’ that indicates the name of the club to which the
member represented by that node belongs, either ’Mr. Hi’ or ’Officer’.

Examples

To get the name of the club to which a node belongs:

>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> G.node[5]['club']
'Mr. Hi'
>>> G.node[9]['club']
'Officer'

References

6.14.2 davis_southern_women_graph

davis_southern_women_graph()
Return Davis Southern women social network.

This is a bipartite graph.
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6.14.3 florentine_families_graph

florentine_families_graph()
Return Florentine families graph.

References

6.15 Community

Generators for classes of graphs used in studying social networks.

caveman_graph(l, k) Returns a caveman graph of l cliques of size k.
connected_caveman_graph(l, k) Returns a connected caveman graph of l cliques of size k.
relaxed_caveman_graph(l, k, p[, seed]) Return a relaxed caveman graph.
random_partition_graph(sizes, p_in, p_out[, ...]) Return the random partition graph with a partition of sizes.
planted_partition_graph(l, k, p_in, p_out[, ...]) Return the planted l-partition graph.
gaussian_random_partition_graph(n, s, v, ...) Generate a Gaussian random partition graph.

6.15.1 caveman_graph

caveman_graph(l, k)
Returns a caveman graph of l cliques of size k.

Parameters

• l (int) – Number of cliques

• k (int) – Size of cliques

Returns G – caveman graph

Return type NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed graph using nx.to_directed(), or a
multigraph using nx.MultiGraph(nx.caveman_graph(l, k)). Only the undirected version is de-
scribed in 1 and it is unclear which of the directed generalizations is most useful.

Examples

>>> G = nx.caveman_graph(3, 3)

See also:

connected_caveman_graph()

1 Watts, D. J. ‘Networks, Dynamics, and the Small-World Phenomenon.’ Amer. J. Soc. 105, 493-527, 1999.
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6.15.2 connected_caveman_graph

connected_caveman_graph(l, k)
Returns a connected caveman graph of l cliques of size k.

The connected caveman graph is formed by creating n cliques of size k, then a single edge in each clique is
rewired to a node in an adjacent clique.

Parameters

• l (int) – number of cliques

• k (int) – size of cliques

Returns G – connected caveman graph

Return type NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed graph using nx.to_directed(), or a
multigraph using nx.MultiGraph(nx.caveman_graph(l, k)). Only the undirected version is de-
scribed in 1 and it is unclear which of the directed generalizations is most useful.

Examples

>>> G = nx.connected_caveman_graph(3, 3)

References

6.15.3 relaxed_caveman_graph

relaxed_caveman_graph(l, k, p, seed=None)
Return a relaxed caveman graph.

A relaxed caveman graph starts with l cliques of size k. Edges are then randomly rewired with probability p to
link different cliques.

Parameters

• l (int) – Number of groups

• k (int) – Size of cliques

• p (float) – Probabilty of rewiring each edge.

• seed (int,optional) – Seed for random number generator(default=None)

Returns G – Relaxed Caveman Graph

Return type NetworkX Graph

Raises NetworkXError: – If p is not in [0,1]

1 Watts, D. J. ‘Networks, Dynamics, and the Small-World Phenomenon.’ Amer. J. Soc. 105, 493-527, 1999.
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Examples

>>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)

References

6.15.4 random_partition_graph

random_partition_graph(sizes, p_in, p_out, seed=None, directed=False)
Return the random partition graph with a partition of sizes.

A partition graph is a graph of communities with sizes defined by s in sizes. Nodes in the same group are
connected with probability p_in and nodes of different groups are connected with probability p_out.

Parameters

• sizes (list of ints) – Sizes of groups

• p_in (float) – probability of edges with in groups

• p_out (float) – probability of edges between groups

• directed (boolean optional, default=False) – Whether to create a directed
graph

• seed (int optional, default None) – A seed for the random number generator

Returns G – random partition graph of size sum(gs)

Return type NetworkX Graph or DiGraph

Raises NetworkXError – If p_in or p_out is not in [0,1]

Examples

>>> G = nx.random_partition_graph([10,10,10],.25,.01)
>>> len(G)
30
>>> partition = G.graph['partition']
>>> len(partition)
3

Notes

This is a generalization of the planted-l-partition described in 1. It allows for the creation of groups of any size.

The partition is store as a graph attribute ‘partition’.

1 Santo Fortunato ‘Community Detection in Graphs’ Physical Reports Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612
http://arxiv.org/abs/0906.0612
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6.15.5 planted_partition_graph

planted_partition_graph(l, k, p_in, p_out, seed=None, directed=False)
Return the planted l-partition graph.

This model partitions a graph with n=l*k vertices in l groups with k vertices each. Vertices of the same group
are linked with a probability p_in, and vertices of different groups are linked with probability p_out.

Parameters

• l (int) – Number of groups

• k (int) – Number of vertices in each group

• p_in (float) – probability of connecting vertices within a group

• p_out (float) – probability of connected vertices between groups

• seed (int,optional) – Seed for random number generator(default=None)

• directed (bool,optional (default=False)) – If True return a directed graph

Returns G – planted l-partition graph

Return type NetworkX Graph or DiGraph

Raises NetworkXError: – If p_in,p_out are not in [0,1] or

Examples

>>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1,seed=42)

See also:

random_partition_model()

References

6.15.6 gaussian_random_partition_graph

gaussian_random_partition_graph(n, s, v, p_in, p_out, directed=False, seed=None)
Generate a Gaussian random partition graph.

A Gaussian random partition graph is created by creating k partitions each with a size drawn from a normal
distribution with mean s and variance s/v. Nodes are connected within clusters with probability p_in and between
clusters with probability p_out[1]

Parameters

• n (int) – Number of nodes in the graph

• s (float) – Mean cluster size

• v (float) – Shape parameter. The variance of cluster size distribution is s/v.

• p_in (float) – Probabilty of intra cluster connection.

• p_out (float) – Probability of inter cluster connection.
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• directed (boolean, optional default=False) – Whether to create a directed
graph or not

• seed (int) – Seed value for random number generator

Returns G – gaussian random partition graph

Return type NetworkX Graph or DiGraph

Raises NetworkXError – If s is > n If p_in or p_out is not in [0,1]

Notes

Note the number of partitions is dependent on s,v and n, and that the last partition may be considerably smaller,
as it is sized to simply fill out the nodes [1]

See also:

random_partition_graph()

Examples

>>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1)
>>> len(G)
100

References

6.16 Non Isomorphic Trees

Implementation of the Wright, Richmond, Odlyzko and McKay (WROM) algorithm for the enumeration of all non-
isomorphic free trees of a given order. Rooted trees are represented by level sequences, i.e., lists in which the i-th
element specifies the distance of vertex i to the root.

nonisomorphic_trees(order[, create]) Returns a list of nonisomporphic trees
number_of_nonisomorphic_trees(order) Returns the number of nonisomorphic trees

6.16.1 nonisomorphic_trees

nonisomorphic_trees(order, create=’graph’)
Returns a list of nonisomporphic trees

Parameters

• order (int) – order of the desired tree(s)

• create (graph or matrix (default="Graph)) – If graph is selected a list of
trees will be returned, if matrix is selected a list of adjancency matrix will be returned

Returns

• G (List of NetworkX Graphs)

• M (List of Adjacency matrices)
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6.16.2 number_of_nonisomorphic_trees

number_of_nonisomorphic_trees(order)
Returns the number of nonisomorphic trees

Parameters order (int) – order of the desired tree(s)

Returns length

Return type Number of nonisomorphic graphs for the given order

References
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CHAPTER 7

Linear algebra

7.1 Graph Matrix

Adjacency matrix and incidence matrix of graphs.

adjacency_matrix(G[, nodelist, weight]) Return adjacency matrix of G.
incidence_matrix(G[, nodelist, edgelist, ...]) Return incidence matrix of G.

7.1.1 adjacency_matrix

adjacency_matrix(G, nodelist=None, weight=’weight’)
Return adjacency matrix of G.

Parameters

• G (graph) – A NetworkX graph

• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

• weight (string or None, optional (default=’weight’)) – The edge
data key used to provide each value in the matrix. If None, then each edge has weight
1.

Returns A – Adjacency matrix representation of G.

Return type SciPy sparse matrix

Notes

For directed graphs, entry i,j corresponds to an edge from i to j.

If you want a pure Python adjacency matrix representation try networkx.convert.to_dict_of_dicts which will
return a dictionary-of-dictionaries format that can be addressed as a sparse matrix.

For MultiGraph/MultiDiGraph with parallel edges the weights are summed. See to_numpy_matrix for other
options.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the edge weight
attribute (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge
weight is desired the resulting Scipy sparse matrix can be modified as follows:
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>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.adjacency_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]

See also:

to_numpy_matrix(), to_scipy_sparse_matrix(), to_dict_of_dicts()

7.1.2 incidence_matrix

incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None)
Return incidence matrix of G.

The incidence matrix assigns each row to a node and each column to an edge. For a standard incidence matrix a
1 appears wherever a row’s node is incident on the column’s edge. For an oriented incidence matrix each edge
is assigned an orientation (arbitrarily for undirected and aligning to direction for directed). A -1 appears for the
tail of an edge and 1 for the head of the edge. The elements are zero otherwise.

Parameters

• G (graph) – A NetworkX graph

• nodelist (list, optional (default= all nodes in G)) – The rows are
ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced
by G.nodes().

• edgelist (list, optional (default= all edges in G)) – The columns
are ordered according to the edges in edgelist. If edgelist is None, then the ordering is
produced by G.edges().

• oriented (bool, optional (default=False)) – If True, matrix elements are
+1 or -1 for the head or tail node respectively of each edge. If False, +1 occurs at both
nodes.

• weight (string or None, optional (default=None)) – The edge data key
used to provide each value in the matrix. If None, then each edge has weight 1. Edge
weights, if used, should be positive so that the orientation can provide the sign.

Returns A – The incidence matrix of G.

Return type SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges in edgelist should be (u,v,key) 3-tuples.

“Networks are the best discrete model for so many problems in applied mathematics” 1.

1 Gil Strang, Network applications: A = incidence matrix, http://academicearth.org/lectures/network-applications-incidence-matrix
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7.2 Laplacian Matrix

Laplacian matrix of graphs.

laplacian_matrix(G[, nodelist, weight]) Return the Laplacian matrix of G.
normalized_laplacian_matrix(G[, nodelist, ...]) Return the normalized Laplacian matrix of G.
directed_laplacian_matrix(G[, nodelist, ...]) Return the directed Laplacian matrix of G.

7.2.1 laplacian_matrix

laplacian_matrix(G, nodelist=None, weight=’weight’)
Return the Laplacian matrix of G.

The graph Laplacian is the matrix L = D - A, where A is the adjacency matrix and D is the diagonal matrix of
node degrees.

Parameters

• G (graph) – A NetworkX graph

• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

• weight (string or None, optional (default=’weight’)) – The edge
data key used to compute each value in the matrix. If None, then each edge has weight
1.

Returns L – The Laplacian matrix of G.

Return type SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.

See also:

to_numpy_matrix(), normalized_laplacian_matrix()

7.2.2 normalized_laplacian_matrix

normalized_laplacian_matrix(G, nodelist=None, weight=’weight’)
Return the normalized Laplacian matrix of G.

The normalized graph Laplacian is the matrix

𝑁 = 𝐷−1/2𝐿𝐷−1/2

where 𝐿 is the graph Laplacian and 𝐷 is the diagonal matrix of node degrees.

Parameters

• G (graph) – A NetworkX graph
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• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

• weight (string or None, optional (default=’weight’)) – The edge
data key used to compute each value in the matrix. If None, then each edge has weight
1.

Returns N – The normalized Laplacian matrix of G.

Return type NumPy matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is the adjacency matrix 2.

See also:

laplacian_matrix()

References

7.2.3 directed_laplacian_matrix

directed_laplacian_matrix(G, nodelist=None, weight=’weight’, walk_type=None, alpha=0.95)
Return the directed Laplacian matrix of G.

The graph directed Laplacian is the matrix

𝐿 = 𝐼 − (Φ1/2𝑃Φ−1/2 + Φ−1/2𝑃𝑇 Φ1/2)/2

where 𝐼 is the identity matrix, 𝑃 is the transition matrix of the graph, and Φ a matrix with the Perron vector of
𝑃 in the diagonal and zeros elsewhere.

Depending on the value of walk_type, 𝑃 can be the transition matrix induced by a random walk, a lazy random
walk, or a random walk with teleportation (PageRank).

Parameters

• G (DiGraph) – A NetworkX graph

• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

• weight (string or None, optional (default=’weight’)) – The edge
data key used to compute each value in the matrix. If None, then each edge has weight
1.

• walk_type (string or None, optional (default=None)) – If None, 𝑃 is
selected depending on the properties of the graph. Otherwise is one of ‘random’, ‘lazy’, or
‘pagerank’

• alpha (real) – (1 - alpha) is the teleportation probability used with pagerank

Returns L – Normalized Laplacian of G.

Return type NumPy array

2 Steve Butler, Interlacing For Weighted Graphs Using The Normalized Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
March 2007.
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Raises

• NetworkXError – If NumPy cannot be imported

• NetworkXNotImplemnted – If G is not a DiGraph

Notes

Only implemented for DiGraphs

See also:

laplacian_matrix()

References

7.3 Spectrum

Eigenvalue spectrum of graphs.

laplacian_spectrum(G[, weight]) Return eigenvalues of the Laplacian of G
adjacency_spectrum(G[, weight]) Return eigenvalues of the adjacency matrix of G.

7.3.1 laplacian_spectrum

laplacian_spectrum(G, weight=’weight’)
Return eigenvalues of the Laplacian of G

Parameters

• G (graph) – A NetworkX graph

• weight (string or None, optional (default=’weight’)) – The edge
data key used to compute each value in the matrix. If None, then each edge has weight
1.

Returns evals – Eigenvalues

Return type NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

See also:

laplacian_matrix()

7.3.2 adjacency_spectrum

adjacency_spectrum(G, weight=’weight’)
Return eigenvalues of the adjacency matrix of G.

Parameters
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• G (graph) – A NetworkX graph

• weight (string or None, optional (default=’weight’)) – The edge
data key used to compute each value in the matrix. If None, then each edge has weight
1.

Returns evals – Eigenvalues

Return type NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

See also:

adjacency_matrix()

7.4 Algebraic Connectivity

Algebraic connectivity and Fiedler vectors of undirected graphs.

algebraic_connectivity(G[, weight, ...]) Return the algebraic connectivity of an undirected graph.
fiedler_vector(G[, weight, normalized, tol, ...]) Return the Fiedler vector of a connected undirected graph.
spectral_ordering(G[, weight, normalized, ...]) Compute the spectral_ordering of a graph.

7.4.1 algebraic_connectivity

algebraic_connectivity(G, weight=’weight’, normalized=False, tol=1e-08, method=’tracemin’)
Return the algebraic connectivity of an undirected graph.

The algebraic connectivity of a connected undirected graph is the second smallest eigenvalue of its Laplacian
matrix.

Parameters

• G (NetworkX graph) – An undirected graph.

• weight (object, optional) – The data key used to determine the weight of each
edge. If None, then each edge has unit weight. Default value: None.

• normalized (bool, optional) – Whether the normalized Laplacian matrix is used.
Default value: False.

• tol (float, optional) – Tolerance of relative residual in eigenvalue computation.
Default value: 1e-8.

• method (string, optional) – Method of eigenvalue computation. It should be one
of ‘tracemin’ (TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG). Default
value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying
the solver to be used.

424 Chapter 7. Linear algebra



NetworkX Reference, Release 1.11

Value Solver
‘tracemin_pcg’ Preconditioned conjugate gradient method
‘tracemin_chol’ Cholesky factorization
‘tracemin_lu’ LU factorization

Returns algebraic_connectivity – Algebraic connectivity.

Return type float

Raises

• NetworkXNotImplemented – If G is directed.

• NetworkXError – If G has less than two nodes.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s, weights of parallel edges are summed.
Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed.

See also:

laplacian_matrix()

7.4.2 fiedler_vector

fiedler_vector(G, weight=’weight’, normalized=False, tol=1e-08, method=’tracemin’)
Return the Fiedler vector of a connected undirected graph.

The Fiedler vector of a connected undirected graph is the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian matrix of of the graph.

Parameters

• G (NetworkX graph) – An undirected graph.

• weight (object, optional) – The data key used to determine the weight of each
edge. If None, then each edge has unit weight. Default value: None.

• normalized (bool, optional) – Whether the normalized Laplacian matrix is used.
Default value: False.

• tol (float, optional) – Tolerance of relative residual in eigenvalue computation.
Default value: 1e-8.

• method (string, optional) – Method of eigenvalue computation. It should be one
of ‘tracemin’ (TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG). Default
value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying
the solver to be used.

Value Solver
‘tracemin_pcg’ Preconditioned conjugate gradient method
‘tracemin_chol’ Cholesky factorization
‘tracemin_lu’ LU factorization

Returns fiedler_vector – Fiedler vector.

Return type NumPy array of floats.
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Raises

• NetworkXNotImplemented – If G is directed.

• NetworkXError – If G has less than two nodes or is not connected.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s, weights of parallel edges are summed.
Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed.

See also:

laplacian_matrix()

7.4.3 spectral_ordering

spectral_ordering(G, weight=’weight’, normalized=False, tol=1e-08, method=’tracemin’)
Compute the spectral_ordering of a graph.

The spectral ordering of a graph is an ordering of its nodes where nodes in the same weakly connected compo-
nents appear contiguous and ordered by their corresponding elements in the Fiedler vector of the component.

Parameters

• G (NetworkX graph) – A graph.

• weight (object, optional) – The data key used to determine the weight of each
edge. If None, then each edge has unit weight. Default value: None.

• normalized (bool, optional) – Whether the normalized Laplacian matrix is used.
Default value: False.

• tol (float, optional) – Tolerance of relative residual in eigenvalue computation.
Default value: 1e-8.

• method (string, optional) – Method of eigenvalue computation. It should be one
of ‘tracemin’ (TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG). Default
value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying
the solver to be used.

Value Solver
‘tracemin_pcg’ Preconditioned conjugate gradient method
‘tracemin_chol’ Cholesky factorization
‘tracemin_lu’ LU factorization

Returns spectral_ordering – Spectral ordering of nodes.

Return type NumPy array of floats.

Raises NetworkXError – If G is empty.
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Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s, weights of parallel edges are summed.
Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed.

See also:

laplacian_matrix()

7.5 Attribute Matrices

Functions for constructing matrix-like objects from graph attributes.

attr_matrix(G[, edge_attr, node_attr, ...]) Returns a NumPy matrix using attributes from G.
attr_sparse_matrix(G[, edge_attr, ...]) Returns a SciPy sparse matrix using attributes from G.

7.5.1 attr_matrix

attr_matrix(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None, or-
der=None)

Returns a NumPy matrix using attributes from G.

If only 𝐺 is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute 𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟. Then the elements of A represent the rows and
columns of the constructed matrix. Now, iterate through every edge e=(u,v) in 𝐺 and consider the value of the
edge attribute 𝑒𝑑𝑔𝑒𝑎𝑡𝑡𝑟. If ua and va are the values of the node attribute 𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟 for u and v, respectively, then
the value of the edge attribute is added to the matrix element at (ua, va).

Parameters

• G (graph) – The NetworkX graph used to construct the NumPy matrix.

• edge_attr (str, optional) – Each element of the matrix represents a running total
of the specified edge attribute for edges whose node attributes correspond to the rows/cols
of the matirx. The attribute must be present for all edges in the graph. If no attribute is
specified, then we just count the number of edges whose node attributes correspond to the
matrix element.

• node_attr (str, optional) – Each row and column in the matrix represents a par-
ticular value of the node attribute. The attribute must be present for all nodes in the graph.
Note, the values of this attribute should be reliably hashable. So, float values are not rec-
ommended. If no attribute is specified, then the rows and columns will be the nodes of the
graph.

• normalized (bool, optional) – If True, then each row is normalized by the sum-
mation of its values.

• rc_order (list, optional) – A list of the node attribute values. This list specifies
the ordering of rows and columns of the array. If no ordering is provided, then the ordering
will be random (and also, a return value).

Other Parameters
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• dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array.
Keep in mind certain dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

• order ({‘C’, ‘F’}, optional) – Whether to store multidimensional data in C- or Fortran-
contiguous (row- or column-wise) order in memory. This parameter is passed to
numpy.zeros(). If unspecified, the NumPy default is used.

Returns

• M (NumPy matrix) – The attribute matrix.

• ordering (list) – If 𝑟𝑐𝑜𝑟𝑑𝑒𝑟 was specified, then only the matrix is returned. However, if
𝑟𝑐𝑜𝑟𝑑𝑒𝑟 was None, then the ordering used to construct the matrix is returned as well.

Examples

Construct an adjacency matrix:

>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> nx.attr_matrix(G, rc_order=[0,1,2])
matrix([[ 0., 1., 1.],

[ 1., 0., 1.],
[ 1., 1., 0.]])

Alternatively, we can obtain the matrix describing edge thickness.

>>> nx.attr_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
matrix([[ 0., 1., 2.],

[ 1., 0., 3.],
[ 2., 3., 0.]])

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> nx.attr_matrix(G, node_attr='color', normalized=True, rc_order=rc)
matrix([[ 0.33333333, 0.66666667],

[ 1. , 0. ]])

For example, the above tells us that for all edges (u,v):

Pr( v is red | u is red) = 1/3 Pr( v is blue | u is red) = 2/3

Pr( v is red | u is blue) = 1 Pr( v is blue | u is blue) = 0

Finally, we can obtain the total weights listed by the node colors.

>>> nx.attr_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
matrix([[ 3., 2.],

[ 2., 0.]])

Thus, the total weight over all edges (u,v) with u and v having colors:
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(red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges
(0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there
are no edges with blue endpoints

7.5.2 attr_sparse_matrix

attr_sparse_matrix(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None,
dtype=None)

Returns a SciPy sparse matrix using attributes from G.

If only 𝐺 is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute 𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟. Then the elements of A represent the rows and
columns of the constructed matrix. Now, iterate through every edge e=(u,v) in 𝐺 and consider the value of the
edge attribute 𝑒𝑑𝑔𝑒𝑎𝑡𝑡𝑟. If ua and va are the values of the node attribute 𝑛𝑜𝑑𝑒𝑎𝑡𝑡𝑟 for u and v, respectively, then
the value of the edge attribute is added to the matrix element at (ua, va).

Parameters

• G (graph) – The NetworkX graph used to construct the NumPy matrix.

• edge_attr (str, optional) – Each element of the matrix represents a running total
of the specified edge attribute for edges whose node attributes correspond to the rows/cols
of the matirx. The attribute must be present for all edges in the graph. If no attribute is
specified, then we just count the number of edges whose node attributes correspond to the
matrix element.

• node_attr (str, optional) – Each row and column in the matrix represents a par-
ticular value of the node attribute. The attribute must be present for all nodes in the graph.
Note, the values of this attribute should be reliably hashable. So, float values are not rec-
ommended. If no attribute is specified, then the rows and columns will be the nodes of the
graph.

• normalized (bool, optional) – If True, then each row is normalized by the sum-
mation of its values.

• rc_order (list, optional) – A list of the node attribute values. This list specifies
the ordering of rows and columns of the array. If no ordering is provided, then the ordering
will be random (and also, a return value).

Other Parameters dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the
array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

Returns

• M (SciPy sparse matrix) – The attribute matrix.

• ordering (list) – If 𝑟𝑐𝑜𝑟𝑑𝑒𝑟 was specified, then only the matrix is returned. However, if
𝑟𝑐𝑜𝑟𝑑𝑒𝑟 was None, then the ordering used to construct the matrix is returned as well.

Examples

Construct an adjacency matrix:

>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
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>>> M = nx.attr_sparse_matrix(G, rc_order=[0,1,2])
>>> M.todense()
matrix([[ 0., 1., 1.],

[ 1., 0., 1.],
[ 1., 1., 0.]])

Alternatively, we can obtain the matrix describing edge thickness.

>>> M = nx.attr_sparse_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
>>> M.todense()
matrix([[ 0., 1., 2.],

[ 1., 0., 3.],
[ 2., 3., 0.]])

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> M = nx.attr_sparse_matrix(G, node_attr='color', normalized=True, rc_order=rc)
>>> M.todense()
matrix([[ 0.33333333, 0.66666667],

[ 1. , 0. ]])

For example, the above tells us that for all edges (u,v):

Pr( v is red | u is red) = 1/3 Pr( v is blue | u is red) = 2/3

Pr( v is red | u is blue) = 1 Pr( v is blue | u is blue) = 0

Finally, we can obtain the total weights listed by the node colors.

>>> M = nx.attr_sparse_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
>>> M.todense()
matrix([[ 3., 2.],

[ 2., 0.]])

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges
(0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there
are no edges with blue endpoints
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CHAPTER 8

Converting to and from other data formats

8.1 To NetworkX Graph

Functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the
to_networkx_graph() function which attempts to guess the input type and convert it automatically.

Examples

Create a graph with a single edge from a dictionary of dictionaries

>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)

See also:

nx_agraph, nx_pydot

to_networkx_graph(data[, create_using, ...]) Make a NetworkX graph from a known data structure.

8.1.1 to_networkx_graph

to_networkx_graph(data, create_using=None, multigraph_input=False)
Make a NetworkX graph from a known data structure.

The preferred way to call this is automatically from the class constructor

>>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)

instead of the equivalent

>>> G=nx.from_dict_of_dicts(d)

Parameters

• data (a object to be converted) – Current known types are: any NetworkX
graph dict-of-dicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse ma-
trix pygraphviz agraph
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• create_using (NetworkX graph) – Use specified graph for result. Otherwise a new
graph is created.

• multigraph_input (bool (default False)) – If True and data is a
dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and cre-
ate_using are both multigraphs then create a multigraph from a multigraph.

8.2 Dictionaries

to_dict_of_dicts(G[, nodelist, edge_data]) Return adjacency representation of graph as a dictionary of dictionaries.
from_dict_of_dicts(d[, create_using, ...]) Return a graph from a dictionary of dictionaries.

8.2.1 to_dict_of_dicts

to_dict_of_dicts(G, nodelist=None, edge_data=None)
Return adjacency representation of graph as a dictionary of dictionaries.

Parameters

• G (graph) – A NetworkX graph

• nodelist (list) – Use only nodes specified in nodelist

• edge_data (list, optional) – If provided, the value of the dictionary will be set to
edge_data for all edges. This is useful to make an adjacency matrix type representation with
1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a
multigraph, the edgedata is a dict for each pair (u,v).

8.2.2 from_dict_of_dicts

from_dict_of_dicts(d, create_using=None, multigraph_input=False)
Return a graph from a dictionary of dictionaries.

Parameters

• d (dictionary of dictionaries) – A dictionary of dictionaries adjacency repre-
sentation.

• create_using (NetworkX graph) – Use specified graph for result. Otherwise a new
graph is created.

• multigraph_input (bool (default False)) – When True, the values of the in-
ner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine
assumes the edge data are singletons.

Examples

>>> dod= {0: {1:{'weight':1}}} # single edge (0,1)
>>> G=nx.from_dict_of_dicts(dod)

or >>> G=nx.Graph(dod) # use Graph constructor
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8.3 Lists

to_dict_of_lists(G[, nodelist]) Return adjacency representation of graph as a dictionary of lists.
from_dict_of_lists(d[, create_using]) Return a graph from a dictionary of lists.
to_edgelist(G[, nodelist]) Return a list of edges in the graph.
from_edgelist(edgelist[, create_using]) Return a graph from a list of edges.

8.3.1 to_dict_of_lists

to_dict_of_lists(G, nodelist=None)
Return adjacency representation of graph as a dictionary of lists.

Parameters

• G (graph) – A NetworkX graph

• nodelist (list) – Use only nodes specified in nodelist

Notes

Completely ignores edge data for MultiGraph and MultiDiGraph.

8.3.2 from_dict_of_lists

from_dict_of_lists(d, create_using=None)
Return a graph from a dictionary of lists.

Parameters

• d (dictionary of lists) – A dictionary of lists adjacency representation.

• create_using (NetworkX graph) – Use specified graph for result. Otherwise a new
graph is created.

Examples

>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)

or >>> G=nx.Graph(dol) # use Graph constructor

8.3.3 to_edgelist

to_edgelist(G, nodelist=None)
Return a list of edges in the graph.

Parameters

• G (graph) – A NetworkX graph

• nodelist (list) – Use only nodes specified in nodelist
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8.3.4 from_edgelist

from_edgelist(edgelist, create_using=None)
Return a graph from a list of edges.

Parameters

• edgelist (list or iterator) – Edge tuples

• create_using (NetworkX graph) – Use specified graph for result. Otherwise a new
graph is created.

Examples

>>> edgelist= [(0,1)] # single edge (0,1)
>>> G=nx.from_edgelist(edgelist)

or >>> G=nx.Graph(edgelist) # use Graph constructor

8.4 Numpy

Functions to convert NetworkX graphs to and from numpy/scipy matrices.

The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the
to_networkx_graph() function which attempts to guess the input type and convert it automatically.

Examples

Create a 10 node random graph from a numpy matrix

>>> import numpy
>>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))
>>> D = nx.DiGraph(a)

or equivalently

>>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph())

See also:

nx_agraph, nx_pydot

to_numpy_matrix(G[, nodelist, dtype, order, ...]) Return the graph adjacency matrix as a NumPy matrix.
to_numpy_recarray(G[, nodelist, dtype, order]) Return the graph adjacency matrix as a NumPy recarray.
from_numpy_matrix(A[, parallel_edges, ...]) Return a graph from numpy matrix.

8.4.1 to_numpy_matrix

to_numpy_matrix(G, nodelist=None, dtype=None, order=None, multigraph_weight=<built-in function
sum>, weight=’weight’, nonedge=0.0)

Return the graph adjacency matrix as a NumPy matrix.

Parameters
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• G (graph) – The NetworkX graph used to construct the NumPy matrix.

• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

• dtype (NumPy data type, optional) – A valid single NumPy data type used to
initialize the array. This must be a simple type such as int or numpy.float64 and not a
compound data type (see to_numpy_recarray) If None, then the NumPy default is used.

• order ({’C’, ’F’}, optional) – Whether to store multidimensional data in C- or
Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy de-
fault is used.

• multigraph_weight ({sum, min, max}, optional) – An operator that deter-
mines how weights in multigraphs are handled. The default is to sum the weights of the
multiple edges.

• weight (string or None optional (default = ’weight’)) – The edge
attribute that holds the numerical value used for the edge weight. If an edge does not have
that attribute, then the value 1 is used instead.

• nonedge (float (default = 0.0)) – The matrix values corresponding to nonedges
are typically set to zero. However, this could be undesirable if there are matrix values
corresponding to actual edges that also have the value zero. If so, one might prefer nonedges
to have some other value, such as nan.

Returns M – Graph adjacency matrix

Return type NumPy matrix

See also:

to_numpy_recarray(), from_numpy_matrix()

Notes

The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the
value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined
by the multigraph_weight parameter. The default is to sum the weight attributes for each of the parallel
edges.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced
by the nodes in nodelist.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight
attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling
the edge weight is desired the resulting Numpy matrix can be modified as follows:

>>> import numpy as np
>>> G = nx.Graph([(1, 1)])
>>> A = nx.to_numpy_matrix(G)
>>> A
matrix([[ 1.]])
>>> A.A[np.diag_indices_from(A)] *= 2
>>> A
matrix([[ 2.]])
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Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_numpy_matrix(G, nodelist=[0,1,2])
matrix([[ 0., 2., 0.],

[ 1., 0., 0.],
[ 0., 0., 4.]])

8.4.2 to_numpy_recarray

to_numpy_recarray(G, nodelist=None, dtype=[(‘weight’, <type ‘float’>)], order=None)
Return the graph adjacency matrix as a NumPy recarray.

Parameters

• G (graph) – The NetworkX graph used to construct the NumPy matrix.

• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡. If 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is None, then the ordering is produced by G.nodes().

• dtype (NumPy data-type, optional) – A valid NumPy named dtype used to ini-
tialize the NumPy recarray. The data type names are assumed to be keys in the graph edge
attribute dictionary.

• order ({’C’, ’F’}, optional) – Whether to store multidimensional data in C- or
Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy de-
fault is used.

Returns M – The graph with specified edge data as a Numpy recarray

Return type NumPy recarray

Notes

When 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 does not contain every node in 𝐺, the matrix is built from the subgraph of 𝐺 that is induced by
the nodes in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡.

Examples

>>> G = nx.Graph()
>>> G.add_edge(1,2,weight=7.0,cost=5)
>>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
>>> print(A.weight)
[[ 0. 7.]
[ 7. 0.]]
>>> print(A.cost)
[[0 5]
[5 0]]
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8.4.3 from_numpy_matrix

from_numpy_matrix(A, parallel_edges=False, create_using=None)
Return a graph from numpy matrix.

The numpy matrix is interpreted as an adjacency matrix for the graph.

Parameters

• A (numpy matrix) – An adjacency matrix representation of a graph

• parallel_edges (Boolean) – If this is True, create_using is a multigraph, and
A is an integer matrix, then entry (i, j) in the matrix is interpreted as the number of parallel
edges joining vertices i and j in the graph. If it is False, then the entries in the adjacency
matrix are interpreted as the weight of a single edge joining the vertices.

• create_using (NetworkX graph) – Use specified graph for result. The default is
Graph()

Notes

If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph,
parallel_edges is True, and the entries of A are of type int, then this function returns a multigraph
(of the same type as create_using) with parallel edges.

If create_using is an undirected multigraph, then only the edges indicated by the upper triangle of the
matrix 𝐴 will be added to the graph.

If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python
data type.

If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute
keys in the resulting NetworkX graph.

See also:

to_numpy_matrix(), to_numpy_recarray()

Examples

Simple integer weights on edges:

>>> import numpy
>>> A=numpy.matrix([[1, 1], [2, 1]])
>>> G=nx.from_numpy_matrix(A)

If create_using is a multigraph and the matrix has only integer entries, the entries will be interpreted as
weighted edges joining the vertices (without creating parallel edges):

>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}

If create_using is a multigraph and the matrix has only integer entries but parallel_edges is True,
then the entries will be interpreted as the number of parallel edges joining those two vertices:
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>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> temp = nx.MultiGraph()
>>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp)
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}

User defined compound data type on edges:

>>> import numpy
>>> dt = [('weight', float), ('cost', int)]
>>> A = numpy.matrix([[(1.0, 2)]], dtype = dt)
>>> G = nx.from_numpy_matrix(A)
>>> G.edges()
[(0, 0)]
>>> G[0][0]['cost']
2
>>> G[0][0]['weight']
1.0

8.5 Scipy

to_scipy_sparse_matrix(G[, nodelist, dtype, ...]) Return the graph adjacency matrix as a SciPy sparse matrix.
from_scipy_sparse_matrix(A[, ...]) Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.

8.5.1 to_scipy_sparse_matrix

to_scipy_sparse_matrix(G, nodelist=None, dtype=None, weight=’weight’, format=’csr’)
Return the graph adjacency matrix as a SciPy sparse matrix.

Parameters

• G (graph) – The NetworkX graph used to construct the NumPy matrix.

• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡. If 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is None, then the ordering is produced by G.nodes().

• dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize
the array. If None, then the NumPy default is used.

• weight (string or None optional (default=’weight’)) – The edge at-
tribute that holds the numerical value used for the edge weight. If None then all edge weights
are 1.

• format (str in {’bsr’, ’csr’, ’csc’, ’coo’, ’lil’, ’dia’,
’dok’}) – The type of the matrix to be returned (default ‘csr’). For some algorithms
different implementations of sparse matrices can perform better. See 1 for details.

Returns M – Graph adjacency matrix.

Return type SciPy sparse matrix

1 Scipy Dev. References, “Sparse Matrices”, http://docs.scipy.org/doc/scipy/reference/sparse.html
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Notes

The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have
that attribute, the value of the entry is 1.

For multiple edges the matrix values are the sums of the edge weights.

When 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 does not contain every node in 𝐺, the matrix is built from the subgraph of 𝐺 that is induced by
the nodes in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡.

Uses coo_matrix format. To convert to other formats specify the format= keyword.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight
attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling
the edge weight is desired the resulting Scipy sparse matrix can be modified as follows:

>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.to_scipy_sparse_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
>>> print(S.todense())
[[0 2 0]
[1 0 0]
[0 0 4]]

References

8.5.2 from_scipy_sparse_matrix

from_scipy_sparse_matrix(A, parallel_edges=False, create_using=None, edge_attribute=’weight’)
Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.

Parameters

• A (scipy sparse matrix) – An adjacency matrix representation of a graph

• parallel_edges (Boolean) – If this is True, 𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔 is a multigraph, and 𝐴 is
an integer matrix, then entry (i, j) in the matrix is interpreted as the number of parallel edges
joining vertices i and j in the graph. If it is False, then the entries in the adjacency matrix
are interpreted as the weight of a single edge joining the vertices.

• create_using (NetworkX graph) – Use specified graph for result. The default is
Graph()
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• edge_attribute (string) – Name of edge attribute to store matrix numeric value.
The data will have the same type as the matrix entry (int, float, (real,imag)).

Notes

If 𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔 is an instance of networkx.MultiGraph or networkx.MultiDiGraph, 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒𝑑𝑔𝑒𝑠
is True, and the entries of 𝐴 are of type int, then this function returns a multigraph (of the same type as
𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔) with parallel edges. In this case, 𝑒𝑑𝑔𝑒𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 will be ignored.

If 𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔 is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix 𝐴
will be added to the graph.

Examples

>>> import scipy.sparse
>>> A = scipy.sparse.eye(2,2,1)
>>> G = nx.from_scipy_sparse_matrix(A)

If 𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔 is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted
edges joining the vertices (without creating parallel edges):

>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}

If 𝑐𝑟𝑒𝑎𝑡𝑒𝑢𝑠𝑖𝑛𝑔 is a multigraph and the matrix has only integer entries but 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑒𝑑𝑔𝑒𝑠 is True, then the
entries will be interpreted as the number of parallel edges joining those two vertices:

>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
... create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}

8.6 Pandas

to_pandas_dataframe(G[, nodelist, ...]) Return the graph adjacency matrix as a Pandas DataFrame.
from_pandas_dataframe(df, source, target[, ...]) Return a graph from Pandas DataFrame.

8.6.1 to_pandas_dataframe

to_pandas_dataframe(G, nodelist=None, multigraph_weight=<built-in function sum>,
weight=’weight’, nonedge=0.0)

Return the graph adjacency matrix as a Pandas DataFrame.

Parameters

• G (graph) – The NetworkX graph used to construct the Pandas DataFrame.
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• nodelist (list, optional) – The rows and columns are ordered according to the
nodes in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡. If 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 is None, then the ordering is produced by G.nodes().

• multigraph_weight ({sum, min, max}, optional) – An operator that deter-
mines how weights in multigraphs are handled. The default is to sum the weights of the
multiple edges.

• weight (string or None, optional) – The edge attribute that holds the numeri-
cal value used for the edge weight. If an edge does not have that attribute, then the value 1
is used instead.

• nonedge (float, optional) – The matrix values corresponding to nonedges are typi-
cally set to zero. However, this could be undesirable if there are matrix values corresponding
to actual edges that also have the value zero. If so, one might prefer nonedges to have some
other value, such as nan.

Returns df – Graph adjacency matrix

Return type Pandas DataFrame

Notes

The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute,
the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined
by the ‘multigraph_weight’ parameter. The default is to sum the weight attributes for each of the parallel edges.

When 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 does not contain every node in 𝐺, the matrix is built from the subgraph of 𝐺 that is induced by
the nodes in 𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight
attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling
the edge weight is desired the resulting Pandas DataFrame can be modified as follows:

>>> import pandas as pd
>>> import numpy as np
>>> G = nx.Graph([(1,1)])
>>> df = nx.to_pandas_dataframe(G)
>>> df

1
1 1
>>> df.values[np.diag_indices_from(df)] *= 2
>>> df

1
1 2

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_pandas_dataframe(G, nodelist=[0,1,2])

0 1 2
0 0 2 0
1 1 0 0
2 0 0 4
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8.6.2 from_pandas_dataframe

from_pandas_dataframe(df, source, target, edge_attr=None, create_using=None)
Return a graph from Pandas DataFrame.

The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node
attributes. Each row will be processed as one edge instance.

Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across
columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that
case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example.

Parameters

• df (Pandas DataFrame) – An edge list representation of a graph

• source (str or int) – A valid column name (string or iteger) for the source nodes (for
the directed case).

• target (str or int) – A valid column name (string or iteger) for the target nodes (for
the directed case).

• edge_attr (str or int, iterable, True) – A valid column name (str or inte-
ger) or list of column names that will be used to retrieve items from the row and add them
to the graph as edge attributes. If 𝑇𝑟𝑢𝑒, all of the remaining columns will be added.

• create_using (NetworkX graph) – Use specified graph for result. The default is
Graph()

See also:

to_pandas_dataframe()

Examples

Simple integer weights on edges:

>>> import pandas as pd
>>> import numpy as np
>>> r = np.random.RandomState(seed=5)
>>> ints = r.random_integers(1, 10, size=(3,2))
>>> a = ['A', 'B', 'C']
>>> b = ['D', 'A', 'E']
>>> df = pd.DataFrame(ints, columns=['weight', 'cost'])
>>> df[0] = a
>>> df['b'] = b
>>> df

weight cost 0 b
0 4 7 A D
1 7 1 B A
2 10 9 C E
>>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost'])
>>> G['E']['C']['weight']
10
>>> G['E']['C']['cost']
9
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CHAPTER 9

Reading and writing graphs

9.1 Adjacency List

9.1.1 Adjacency List

Read and write NetworkX graphs as adjacency lists.

Adjacency list format is useful for graphs without data associated with nodes or edges and for nodes that can be
meaningfully represented as strings.

Format

The adjacency list format consists of lines with node labels. The first label in a line is the source node. Further labels
in the line are considered target nodes and are added to the graph along with an edge between the source node and
target node.

The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a
line is a comment):

a b c # source target target
d e

read_adjlist(path[, comments, delimiter, ...]) Read graph in adjacency list format from path.
write_adjlist(G, path[, comments, ...]) Write graph G in single-line adjacency-list format to path.
parse_adjlist(lines[, comments, delimiter, ...]) Parse lines of a graph adjacency list representation.
generate_adjlist(G[, delimiter]) Generate a single line of the graph G in adjacency list format.

9.1.2 read_adjlist

read_adjlist(path, comments=’#’, delimiter=None, create_using=None, nodetype=None, encoding=’utf-
8’)

Read graph in adjacency list format from path.

Parameters

• path (string or file) – Filename or file handle to read. Filenames ending in .gz or
.bz2 will be uncompressed.

• create_using (NetworkX graph container) – Use given NetworkX graph for
holding nodes or edges.
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• nodetype (Python type, optional) – Convert nodes to this type.

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace.

• create_using – Use given NetworkX graph for holding nodes or edges.

Returns G – The graph corresponding to the lines in adjacency list format.

Return type NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G, "test.adjlist")
>>> G=nx.read_adjlist("test.adjlist")

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened
in ‘rb’ mode.

>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_adjlist("test.adjlist.gz")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=nx.read_adjlist("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type.

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected
graph. To read the data as a directed graph use

>>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph())

Notes

This format does not store graph or node data.

See also:

write_adjlist()

9.1.3 write_adjlist

write_adjlist(G, path, comments=’#’, delimiter=’ ‘, encoding=’utf-8’)
Write graph G in single-line adjacency-list format to path.
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Parameters

• G (NetworkX graph) –

• path (string or file) – Filename or file handle for data output. Filenames ending in
.gz or .bz2 will be compressed.

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels

• encoding (string, optional) – Text encoding.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G,"test.adjlist")

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened
in ‘wb’ mode.

>>> fh=open("test.adjlist",'wb')
>>> nx.write_adjlist(G, fh)

Notes

This format does not store graph, node, or edge data.

See also:

read_adjlist(), generate_adjlist()

9.1.4 parse_adjlist

parse_adjlist(lines, comments=’#’, delimiter=None, create_using=None, nodetype=None)
Parse lines of a graph adjacency list representation.

Parameters

• lines (list or iterator of strings) – Input data in adjlist format

• create_using (NetworkX graph container) – Use given NetworkX graph for
holding nodes or edges.

• nodetype (Python type, optional) – Convert nodes to this type.

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace.

• create_using – Use given NetworkX graph for holding nodes or edges.

Returns G – The graph corresponding to the lines in adjacency list format.

Return type NetworkX graph
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Examples

>>> lines = ['1 2 5',
... '2 3 4',
... '3 5',
... '4',
... '5']
>>> G = nx.parse_adjlist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4, 5]
>>> G.edges()
[(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)]

See also:

read_adjlist()

9.1.5 generate_adjlist

generate_adjlist(G, delimiter=’ ‘)
Generate a single line of the graph G in adjacency list format.

Parameters

• G (NetworkX graph) –

• delimiter (string, optional) – Separator for node labels

Returns lines – Lines of data in adjlist format.

Return type string

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_adjlist(G):
... print(line)
0 1 2 3
1 2 3
2 3
3 4
4 5
5 6
6

See also:

write_adjlist(), read_adjlist()

9.2 Multiline Adjacency List

9.2.1 Multi-line Adjacency List

Read and write NetworkX graphs as multi-line adjacency lists.
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The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings.
With this format simple edge data can be stored but node or graph data is not.

Format

The first label in a line is the source node label followed by the node degree d. The next d lines are target node labels
and optional edge data. That pattern repeats for all nodes in the graph.

The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a
line is a comment):

# example.multiline-adjlist
a 2
b
c
d 1
e

read_multiline_adjlist(path[, comments, ...]) Read graph in multi-line adjacency list format from path.
write_multiline_adjlist(G, path[, ...]) Write the graph G in multiline adjacency list format to path
parse_multiline_adjlist(lines[, comments, ...]) Parse lines of a multiline adjacency list representation of a graph.
generate_multiline_adjlist(G[, delimiter]) Generate a single line of the graph G in multiline adjacency list format.

9.2.2 read_multiline_adjlist

read_multiline_adjlist(path, comments=’#’, delimiter=None, create_using=None, nodetype=None,
edgetype=None, encoding=’utf-8’)

Read graph in multi-line adjacency list format from path.

Parameters

• path (string or file) – Filename or file handle to read. Filenames ending in .gz or
.bz2 will be uncompressed.

• create_using (NetworkX graph container) – Use given NetworkX graph for
holding nodes or edges.

• nodetype (Python type, optional) – Convert nodes to this type.

• edgetype (Python type, optional) – Convert edge data to this type.

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace.

• create_using – Use given NetworkX graph for holding nodes or edges.

Returns G

Return type NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")
>>> G=nx.read_multiline_adjlist("test.adjlist")
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The path can be a file or a string with the name of the file. If a file s provided, it has to be opened in ‘rb’ mode.

>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_multiline_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_multiline_adjlist("test.adjlist.gz")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type.

The optional edgetype is a function to convert edge data strings to edgetype.

>>> G=nx.read_multiline_adjlist("test.adjlist")

The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected
graph. To read the data as a directed graph use

>>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph())

Notes

This format does not store graph, node, or edge data.

See also:

write_multiline_adjlist()

9.2.3 write_multiline_adjlist

write_multiline_adjlist(G, path, delimiter=’ ‘, comments=’#’, encoding=’utf-8’)
Write the graph G in multiline adjacency list format to path

Parameters

• G (NetworkX graph) –

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels

• encoding (string, optional) – Text encoding.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")

The path can be a file handle or a string with the name of the file. If a file handle is provided, it has to be opened
in ‘wb’ mode.
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>>> fh=open("test.adjlist",'wb')
>>> nx.write_multiline_adjlist(G,fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")

See also:

read_multiline_adjlist()

9.2.4 parse_multiline_adjlist

parse_multiline_adjlist(lines, comments=’#’, delimiter=None, create_using=None, node-
type=None, edgetype=None)

Parse lines of a multiline adjacency list representation of a graph.

Parameters

• lines (list or iterator of strings) – Input data in multiline adjlist format

• create_using (NetworkX graph container) – Use given NetworkX graph for
holding nodes or edges.

• nodetype (Python type, optional) – Convert nodes to this type.

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace.

• create_using – Use given NetworkX graph for holding nodes or edges.

Returns G – The graph corresponding to the lines in multiline adjacency list format.

Return type NetworkX graph

Examples

>>> lines = ['1 2',
... "2 {'weight':3, 'name': 'Frodo'}",
... "3 {}",
... "2 1",
... "5 {'weight':6, 'name': 'Saruman'}"]
>>> G = nx.parse_multiline_adjlist(iter(lines), nodetype = int)
>>> G.nodes()
[1, 2, 3, 5]

9.2.5 generate_multiline_adjlist

generate_multiline_adjlist(G, delimiter=’ ‘)
Generate a single line of the graph G in multiline adjacency list format.

Parameters

• G (NetworkX graph) –

• delimiter (string, optional) – Separator for node labels
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Returns lines – Lines of data in multiline adjlist format.

Return type string

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_multiline_adjlist(G):
... print(line)
0 3
1 {}
2 {}
3 {}
1 2
2 {}
3 {}
2 1
3 {}
3 1
4 {}
4 1
5 {}
5 1
6 {}
6 0

See also:

write_multiline_adjlist(), read_multiline_adjlist()

9.3 Edge List

9.3.1 Edge Lists

Read and write NetworkX graphs as edge lists.

The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings.
With the edgelist format simple edge data can be stored but node or graph data is not. There is no way of representing
isolated nodes unless the node has a self-loop edge.

Format

You can read or write three formats of edge lists with these functions.

Node pairs with no data:

1 2

Python dictionary as data:

1 2 {'weight':7, 'color':'green'}

Arbitrary data:

1 2 7 green
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read_edgelist(path[, comments, delimiter, ...]) Read a graph from a list of edges.
write_edgelist(G, path[, comments, ...]) Write graph as a list of edges.
read_weighted_edgelist(path[, comments, ...]) Read a graph as list of edges with numeric weights.
write_weighted_edgelist(G, path[, comments, ...]) Write graph G as a list of edges with numeric weights.
generate_edgelist(G[, delimiter, data]) Generate a single line of the graph G in edge list format.
parse_edgelist(lines[, comments, delimiter, ...]) Parse lines of an edge list representation of a graph.

9.3.2 read_edgelist

read_edgelist(path, comments=’#’, delimiter=None, create_using=None, nodetype=None, data=True,
edgetype=None, encoding=’utf-8’)

Read a graph from a list of edges.

Parameters

• path (file or string) – File or filename to read. If a file is provided, it must be
opened in ‘rb’ mode. Filenames ending in .gz or .bz2 will be uncompressed.

• comments (string, optional) – The character used to indicate the start of a com-
ment.

• delimiter (string, optional) – The string used to separate values. The default is
whitespace.

• create_using (Graph container, optional,) – Use specified container to
build graph. The default is networkx.Graph, an undirected graph.

• nodetype (int, float, str, Python type, optional) – Convert node data
from strings to specified type

• data (bool or list of (label,type) tuples) – Tuples specifying dictionary
key names and types for edge data

• edgetype (int, float, str, Python type, optional OBSOLETE) –
Convert edge data from strings to specified type and use as ‘weight’

• encoding (string, optional) – Specify which encoding to use when reading file.

Returns G – A networkx Graph or other type specified with create_using

Return type graph

Examples

>>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
>>> G=nx.read_edgelist("test.edgelist")

>>> fh=open("test.edgelist", 'rb')
>>> G=nx.read_edgelist(fh)
>>> fh.close()

>>> G=nx.read_edgelist("test.edgelist", nodetype=int)
>>> G=nx.read_edgelist("test.edgelist",create_using=nx.DiGraph())

Edgelist with data in a list:
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>>> textline = '1 2 3'
>>> fh = open('test.edgelist','w')
>>> d = fh.write(textline)
>>> fh.close()
>>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),))
>>> G.nodes()
[1, 2]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0})]

See parse_edgelist() for more examples of formatting.

See also:

parse_edgelist()

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

9.3.3 write_edgelist

write_edgelist(G, path, comments=’#’, delimiter=’ ‘, data=True, encoding=’utf-8’)
Write graph as a list of edges.

Parameters

• G (graph) – A NetworkX graph

• path (file or string) – File or filename to write. If a file is provided, it must be
opened in ‘wb’ mode. Filenames ending in .gz or .bz2 will be compressed.

• comments (string, optional) – The character used to indicate the start of a com-
ment

• delimiter (string, optional) – The string used to separate values. The default is
whitespace.

• data (bool or list, optional) – If False write no edge data. If True write a string
representation of the edge data dictionary.. If a list (or other iterable) is provided, write the
keys specified in the list.

• encoding (string, optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_edgelist(G, "test.edgelist")
>>> G=nx.path_graph(4)
>>> fh=open("test.edgelist",'wb')
>>> nx.write_edgelist(G, fh)
>>> nx.write_edgelist(G, "test.edgelist.gz")
>>> nx.write_edgelist(G, "test.edgelist.gz", data=False)
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>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7,color='red')
>>> nx.write_edgelist(G,'test.edgelist',data=False)
>>> nx.write_edgelist(G,'test.edgelist',data=['color'])
>>> nx.write_edgelist(G,'test.edgelist',data=['color','weight'])

See also:

write_edgelist(), write_weighted_edgelist()

9.3.4 read_weighted_edgelist

read_weighted_edgelist(path, comments=’#’, delimiter=None, create_using=None, nodetype=None,
encoding=’utf-8’)

Read a graph as list of edges with numeric weights.

Parameters

• path (file or string) – File or filename to read. If a file is provided, it must be
opened in ‘rb’ mode. Filenames ending in .gz or .bz2 will be uncompressed.

• comments (string, optional) – The character used to indicate the start of a com-
ment.

• delimiter (string, optional) – The string used to separate values. The default is
whitespace.

• create_using (Graph container, optional,) – Use specified container to
build graph. The default is networkx.Graph, an undirected graph.

• nodetype (int, float, str, Python type, optional) – Convert node data
from strings to specified type

• encoding (string, optional) – Specify which encoding to use when reading file.

Returns G – A networkx Graph or other type specified with create_using

Return type graph

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

Example edgelist file format.

With numeric edge data:

# read with
# >>> G=nx.read_weighted_edgelist(fh)
# source target data
a b 1
a c 3.14159
d e 42
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9.3.5 write_weighted_edgelist

write_weighted_edgelist(G, path, comments=’#’, delimiter=’ ‘, encoding=’utf-8’)
Write graph G as a list of edges with numeric weights.

Parameters

• G (graph) – A NetworkX graph

• path (file or string) – File or filename to write. If a file is provided, it must be
opened in ‘wb’ mode. Filenames ending in .gz or .bz2 will be compressed.

• comments (string, optional) – The character used to indicate the start of a com-
ment

• delimiter (string, optional) – The string used to separate values. The default is
whitespace.

• encoding (string, optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7)
>>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist')

See also:

read_edgelist(), write_edgelist(), write_weighted_edgelist()

9.3.6 generate_edgelist

generate_edgelist(G, delimiter=’ ‘, data=True)
Generate a single line of the graph G in edge list format.

Parameters

• G (NetworkX graph) –

• delimiter (string, optional) – Separator for node labels

• data (bool or list of keys) – If False generate no edge data. If True use a dictio-
nary representation of edge data. If a list of keys use a list of data values corresponding to
the keys.

Returns lines – Lines of data in adjlist format.

Return type string

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> G[1][2]['weight'] = 3
>>> G[3][4]['capacity'] = 12
>>> for line in nx.generate_edgelist(G, data=False):
... print(line)
0 1
0 2
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0 3
1 2
1 3
2 3
3 4
4 5
5 6

>>> for line in nx.generate_edgelist(G):
... print(line)
0 1 {}
0 2 {}
0 3 {}
1 2 {'weight': 3}
1 3 {}
2 3 {}
3 4 {'capacity': 12}
4 5 {}
5 6 {}

>>> for line in nx.generate_edgelist(G,data=['weight']):
... print(line)
0 1
0 2
0 3
1 2 3
1 3
2 3
3 4
4 5
5 6

See also:

write_adjlist(), read_adjlist()

9.3.7 parse_edgelist

parse_edgelist(lines, comments=’#’, delimiter=None, create_using=None, nodetype=None,
data=True)

Parse lines of an edge list representation of a graph.

Parameters

• lines (list or iterator of strings) – Input data in edgelist format

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels

• create_using (NetworkX graph container, optional) – Use given Net-
workX graph for holding nodes or edges.

• nodetype (Python type, optional) – Convert nodes to this type.

• data (bool or list of (label,type) tuples) – If False generate no edge
data or if True use a dictionary representation of edge data or a list tuples specifying dictio-
nary key names and types for edge data.

Returns G – The graph corresponding to lines
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Return type NetworkX Graph

Examples

Edgelist with no data:

>>> lines = ["1 2",
... "2 3",
... "3 4"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges()
[(1, 2), (2, 3), (3, 4)]

Edgelist with data in Python dictionary representation:

>>> lines = ["1 2 {'weight':3}",
... "2 3 {'weight':27}",
... "3 4 {'weight':3.0}"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]

Edgelist with data in a list:

>>> lines = ["1 2 3",
... "2 3 27",
... "3 4 3.0"]
>>> G = nx.parse_edgelist(lines, nodetype = int, data=(('weight',float),))
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]

See also:

read_weighted_edgelist()

9.4 GEXF

9.4.1 GEXF

Read and write graphs in GEXF format.

GEXF (Graph Exchange XML Format) is a language for describing complex network structures, their associated data
and dynamics.

This implementation does not support mixed graphs (directed and undirected edges together).

Format

GEXF is an XML format. See http://gexf.net/format/schema.html for the specification and
http://gexf.net/format/basic.html for examples.
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read_gexf(path[, node_type, relabel, version]) Read graph in GEXF format from path.
write_gexf(G, path[, encoding, prettyprint, ...]) Write G in GEXF format to path.
relabel_gexf_graph(G) Relabel graph using “label” node keyword for node label.

9.4.2 read_gexf

read_gexf(path, node_type=None, relabel=False, version=‘1.1draft’)
Read graph in GEXF format from path.

“GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associ-
ated data and dynamics” 1.

Parameters

• path (file or string) – File or file name to write. File names ending in .gz or .bz2
will be compressed.

• node_type (Python type (default: None)) – Convert node ids to this type if
not None.

• relabel (bool (default: False)) – If True relabel the nodes to use the GEXF
node “label” attribute instead of the node “id” attribute as the NetworkX node label.

Returns graph – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a Multi-
Graph or MultiDiGraph is returned.

Return type NetworkX graph

Notes

This implementation does not support mixed graphs (directed and undirected edges together).

References

9.4.3 write_gexf

write_gexf(G, path, encoding=’utf-8’, prettyprint=True, version=‘1.1draft’)
Write G in GEXF format to path.

“GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associ-
ated data and dynamics” 1.

Parameters

• G (graph) – A NetworkX graph

• path (file or string) – File or file name to write. File names ending in .gz or .bz2
will be compressed.

• encoding (string (optional)) – Encoding for text data.

• prettyprint (bool (optional)) – If True use line breaks and indenting in output
XML.

1 GEXF graph format, http://gexf.net/format/
1 GEXF graph format, http://gexf.net/format/
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Examples

>>> G=nx.path_graph(4)
>>> nx.write_gexf(G, "test.gexf")

Notes

This implementation does not support mixed graphs (directed and undirected edges together).

The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data,
e.g. node[’a’][’id’]=1 to set the id of node ‘a’ to 1.

References

9.4.4 relabel_gexf_graph

relabel_gexf_graph(G)
Relabel graph using “label” node keyword for node label.

Parameters G (graph) – A NetworkX graph read from GEXF data

Returns H – A NetworkX graph with relabed nodes

Return type graph

Notes

This function relabels the nodes in a NetworkX graph with the “label” attribute. It also handles relabeling the
specific GEXF node attributes “parents”, and “pid”.

9.5 GML

Read graphs in GML format.

“GML, the G>raph Modelling Language, is our proposal for a portable file format for graphs. GML’s key features are
portability, simple syntax, extensibility and flexibility. A GML file consists of a hierarchical key-value lists. Graphs
can be annotated with arbitrary data structures. The idea for a common file format was born at the GD‘95; this proposal
is the outcome of many discussions. GML is the standard file format in the Graphlet graph editor system. It has been
overtaken and adapted by several other systems for drawing graphs.”

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

9.5.1 Format

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html for format specification.

Example graphs in GML format: http://www-personal.umich.edu/~mejn/netdata/

read_gml(path[, label, destringizer]) Read graph in GML format from path.
write_gml(G, path[, stringizer]) Write a graph G in GML format to the file or file handle path.

Continued on next page

458 Chapter 9. Reading and writing graphs

http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://www-personal.umich.edu/~mejn/netdata/


NetworkX Reference, Release 1.11

Table 9.5 – continued from previous page
parse_gml(lines[, label, destringizer]) Parse GML graph from a string or iterable.
generate_gml(G[, stringizer]) Generate a single entry of the graph G in GML format.
literal_destringizer(rep) Convert a Python literal to the value it represents.
literal_stringizer(value) Convert a value to a Python literal in GML representation.

9.5.2 read_gml

read_gml(path, label=’label’, destringizer=None)
Read graph in GML format from path.

Parameters

• path (filename or filehandle) – The filename or filehandle to read from.

• label (string, optional) – If not None, the parsed nodes will be renamed according
to node attributes indicated by label. Default value: ’label’.

• destringizer (callable, optional) – A destringizer that recovers values stored
as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default
value : None.

Returns G – The parsed graph.

Return type NetworkX graph

Raises NetworkXError – If the input cannot be parsed.

See also:

write_gml(), parse_gml()

Notes

The GML specification says that files should be ASCII encoded, with any extended ASCII characters (iso8859-
1) appearing as HTML character entities.

References

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gml(G, 'test.gml')
>>> H = nx.read_gml('test.gml')

9.5.3 write_gml

write_gml(G, path, stringizer=None)
Write a graph G in GML format to the file or file handle path.

Parameters
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• G (NetworkX graph) – The graph to be converted to GML.

• path (filename or filehandle) – The filename or filehandle to write. Files whose
names end with .gz or .bz2 will be compressed.

• stringizer (callable, optional) – A stringizer which converts non-int/non-
float/non-dict values into strings. If it cannot convert a value into a string, it should raise a
ValueError to indicate that. Default value: None.

Raises NetworkXError – If stringizer cannot convert a value into a string, or the value to
convert is not a string while stringizer is None.

See also:

read_gml(), generate_gml()

Notes

Graph attributes named ’directed’, ’multigraph’, ’node’ or ’edge’,node attributes named ’id’
or ’label’, edge attributes named ’source’ or ’target’ (or ’key’ if G is a multigraph) are ignored
because these attribute names are used to encode the graph structure.

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gml(G, "test.gml")

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_gml(G, "test.gml.gz")

9.5.4 parse_gml

parse_gml(lines, label=’label’, destringizer=None)
Parse GML graph from a string or iterable.

Parameters

• lines (string or iterable of strings) – Data in GML format.

• label (string, optional) – If not None, the parsed nodes will be renamed according
to node attributes indicated by label. Default value: ’label’.

• destringizer (callable, optional) – A destringizer that recovers values stored
as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default
value : None.

Returns G – The parsed graph.

Return type NetworkX graph

Raises NetworkXError – If the input cannot be parsed.

See also:

write_gml(), read_gml()
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Notes

This stores nested GML attributes as dictionaries in the NetworkX graph, node, and edge attribute structures.

References

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

9.5.5 generate_gml

generate_gml(G, stringizer=None)
Generate a single entry of the graph G in GML format.

Parameters

• G (NetworkX graph) – The graph to be converted to GML.

• stringizer (callable, optional) – A stringizer which converts non-int/float/dict
values into strings. If it cannot convert a value into a string, it should raise a ValueError
raised to indicate that. Default value: None.

Returns lines – Lines of GML data. Newlines are not appended.

Return type generator of strings

Raises NetworkXError – If stringizer cannot convert a value into a string, or the value to
convert is not a string while stringizer is None.

Notes

Graph attributes named ’directed’, ’multigraph’, ’node’ or ’edge’,node attributes named ’id’
or ’label’, edge attributes named ’source’ or ’target’ (or ’key’ if G is a multigraph) are ignored
because these attribute names are used to encode the graph structure.

9.5.6 literal_destringizer

literal_destringizer(rep)
Convert a Python literal to the value it represents.

Parameters rep (string) – A Python literal.

Returns value – The value of the Python literal.

Return type object

Raises ValueError – If rep is not a Python literal.

9.5.7 literal_stringizer

literal_stringizer(value)
Convert a value to a Python literal in GML representation.

Parameters value (object) – The value to be converted to GML representation.
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Returns rep – A double-quoted Python literal representing value. Unprintable characters are re-
placed by XML character references.

Return type string

Raises ValueError – If value cannot be converted to GML.

Notes

literal_stringizer is largely the same as repr in terms of functionality but attempts prefix unicode
and bytes literals with u and b to provide better interoperability of data generated by Python 2 and Python 3.

The original value can be recovered using the networkx.readwrite.gml.literal_destringizer
function.

9.6 Pickle

9.6.1 Pickled Graphs

Read and write NetworkX graphs as Python pickles.

“The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy.”

Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). For arbitrary
data types it may be difficult to represent the data as text. In that case using Python pickles to store the graph data can
be used.

Format

See http://docs.python.org/library/pickle.html

read_gpickle(path) Read graph object in Python pickle format.
write_gpickle(G, path[, protocol]) Write graph in Python pickle format.

9.6.2 read_gpickle

read_gpickle(path)
Read graph object in Python pickle format.

Pickles are a serialized byte stream of a Python object 1. This format will preserve Python objects used as nodes
or edges.

Parameters path (file or string) – File or filename to write. Filenames ending in .gz or
.bz2 will be uncompressed.

Returns G – A NetworkX graph

Return type graph

1 http://docs.python.org/library/pickle.html
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Examples

>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")
>>> G = nx.read_gpickle("test.gpickle")

References

9.6.3 write_gpickle

write_gpickle(G, path, protocol=2)
Write graph in Python pickle format.

Pickles are a serialized byte stream of a Python object 1. This format will preserve Python objects used as nodes
or edges.

Parameters

• G (graph) – A NetworkX graph

• path (file or string) – File or filename to write. Filenames ending in .gz or .bz2
will be compressed.

• protocol (integer) – Pickling protocol to use. Default value:
pickle.HIGHEST_PROTOCOL.

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")

References

9.7 GraphML

9.7.1 GraphML

Read and write graphs in GraphML format.

This implementation does not support mixed graphs (directed and unidirected edges together), hyperedges, nested
graphs, or ports.

“GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a language core to describe the
structural properties of a graph and a flexible extension mechanism to add application-specific data. Its main features
include support of

• directed, undirected, and mixed graphs,

• hypergraphs,

• hierarchical graphs,

• graphical representations,

1 http://docs.python.org/library/pickle.html
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• references to external data,

• application-specific attribute data, and

• light-weight parsers.

Unlike many other file formats for graphs, GraphML does not use a custom syntax. Instead, it is based on XML and
hence ideally suited as a common denominator for all kinds of services generating, archiving, or processing graphs.”

http://graphml.graphdrawing.org/

Format

GraphML is an XML format. See http://graphml.graphdrawing.org/specification.html for the specification and
http://graphml.graphdrawing.org/primer/graphml-primer.html for examples.

read_graphml(path[, node_type]) Read graph in GraphML format from path.
write_graphml(G, path[, encoding, prettyprint]) Write G in GraphML XML format to path

9.7.2 read_graphml

read_graphml(path, node_type=<type ‘str’>)
Read graph in GraphML format from path.

Parameters

• path (file or string) – File or filename to write. Filenames ending in .gz or .bz2
will be compressed.

• node_type (Python type (default: str)) – Convert node ids to this type

Returns graph – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a Multi-
Graph or MultiDiGraph is returned.

Return type NetworkX graph

Notes

This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs,
nested graphs, or ports.

For multigraphs the GraphML edge “id” will be used as the edge key. If not specified then they “key” attribute
will be used. If there is no “key” attribute a default NetworkX multigraph edge key will be provided.

Files with the yEd “yfiles” extension will can be read but the graphics information is discarded.

yEd compressed files (“file.graphmlz” extension) can be read by renaming the file to “file.graphml.gz”.

9.7.3 write_graphml

write_graphml(G, path, encoding=’utf-8’, prettyprint=True)
Write G in GraphML XML format to path

Parameters

• G (graph) – A networkx graph
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• path (file or string) – File or filename to write. Filenames ending in .gz or .bz2
will be compressed.

• encoding (string (optional)) – Encoding for text data.

• prettyprint (bool (optional)) – If True use line breaks and indenting in output
XML.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_graphml(G, "test.graphml")

Notes

This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges,
nested graphs, or ports.

9.8 JSON

9.8.1 JSON data

Generate and parse JSON serializable data for NetworkX graphs.

These formats are suitable for use with the d3.js examples http://d3js.org/

The three formats that you can generate with NetworkX are:

• node-link like in the d3.js example http://bl.ocks.org/mbostock/4062045

• tree like in the d3.js example http://bl.ocks.org/mbostock/4063550

• adjacency like in the d3.js example http://bost.ocks.org/mike/miserables/

node_link_data(G[, attrs]) Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.
node_link_graph(data[, directed, ...]) Return graph from node-link data format.
adjacency_data(G[, attrs]) Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.
adjacency_graph(data[, directed, ...]) Return graph from adjacency data format.
tree_data(G, root[, attrs]) Return data in tree format that is suitable for JSON serialization and use in Javascript documents.
tree_graph(data[, attrs]) Return graph from tree data format.

9.8.2 node_link_data

node_link_data(G, attrs={‘source’: ‘source’, ‘target’: ‘target’, ‘key’: ‘key’, ‘id’: ‘id’})
Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.

Parameters

• G (NetworkX graph) –

• attrs (dict) – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and ‘key’. The
corresponding values provide the attribute names for storing NetworkX-internal graph data.
The values should be unique. Default value: dict(id=’id’, source=’source’,
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target=’target’, key=’key’).

If some user-defined graph data use these attribute names as data keys, they may be silently
dropped.

Returns data – A dictionary with node-link formatted data.

Return type dict

Raises NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in
order to comply with JSON.

The default value of attrs will be changed in a future release of NetworkX.

See also:

node_link_graph(), adjacency_data(), tree_data()

9.8.3 node_link_graph

node_link_graph(data, directed=False, multigraph=True, attrs={‘source’: ‘source’, ‘target’: ‘target’,
‘key’: ‘key’, ‘id’: ‘id’})

Return graph from node-link data format.

Parameters

• data (dict) – node-link formatted graph data

• directed (bool) – If True, and direction not specified in data, return a directed graph.

• multigraph (bool) – If True, and multigraph not specified in data, return a multigraph.

• attrs (dict) – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and ‘key’.
The corresponding values provide the attribute names for storing NetworkX-internal graph
data. Default value: dict(id=’id’, source=’source’, target=’target’,
key=’key’).

Returns G – A NetworkX graph object

Return type NetworkX graph
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Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
>>> H = json_graph.node_link_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also:

node_link_data(), adjacency_data(), tree_data()

9.8.4 adjacency_data

adjacency_data(G, attrs={‘id’: ‘id’, ‘key’: ‘key’})
Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.

Parameters

• G (NetworkX graph) –

• attrs (dict) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding
values provide the attribute names for storing NetworkX-internal graph data. The values
should be unique. Default value: dict(id=’id’, key=’key’).

If some user-defined graph data use these attribute names as data keys, they may be silently
dropped.

Returns data – A dictionary with adjacency formatted data.

Return type dict

Raises NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Graph, node, and link attributes will be written when using this format but attribute keys must be strings if you
want to serialize the resulting data with JSON.

The default value of attrs will be changed in a future release of NetworkX.

See also:
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adjacency_graph(), node_link_data(), tree_data()

9.8.5 adjacency_graph

adjacency_graph(data, directed=False, multigraph=True, attrs={‘id’: ‘id’, ‘key’: ‘key’})
Return graph from adjacency data format.

Parameters data (dict) – Adjacency list formatted graph data

Returns

• G (NetworkX graph) – A NetworkX graph object

• directed (bool) – If True, and direction not specified in data, return a directed graph.

• multigraph (bool) – If True, and multigraph not specified in data, return a multigraph.

• attrs (dict) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding values
provide the attribute names for storing NetworkX-internal graph data. The values should be
unique. Default value: dict(id=’id’, key=’key’).

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)
>>> H = json_graph.adjacency_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also:

adjacency_graph(), node_link_data(), tree_data()

9.8.6 tree_data

tree_data(G, root, attrs={‘children’: ‘children’, ‘id’: ‘id’})
Return data in tree format that is suitable for JSON serialization and use in Javascript documents.

Parameters

• G (NetworkX graph) – G must be an oriented tree

• root (node) – The root of the tree

• attrs (dict) – A dictionary that contains two keys ‘id’ and ‘children’. The corresponding
values provide the attribute names for storing NetworkX-internal graph data. The values
should be unique. Default value: dict(id=’id’, children=’children’).

If some user-defined graph data use these attribute names as data keys, they may be silently
dropped.

Returns data – A dictionary with node-link formatted data.

Return type dict
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Raises NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Node attributes are stored in this format but keys for attributes must be strings if you want to serialize with
JSON.

Graph and edge attributes are not stored.

The default value of attrs will be changed in a future release of NetworkX.

See also:

tree_graph(), node_link_data(), node_link_data()

9.8.7 tree_graph

tree_graph(data, attrs={‘children’: ‘children’, ‘id’: ‘id’})
Return graph from tree data format.

Parameters data (dict) – Tree formatted graph data

Returns

• G (NetworkX DiGraph)

• attrs (dict) – A dictionary that contains two keys ‘id’ and ‘children’. The corresponding
values provide the attribute names for storing NetworkX-internal graph data. The values
should be unique. Default value: dict(id=’id’, children=’children’).

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)
>>> H = json_graph.tree_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also:

tree_graph(), node_link_data(), adjacency_data()
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9.9 LEDA

Read graphs in LEDA format.

LEDA is a C++ class library for efficient data types and algorithms.

9.9.1 Format

See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

read_leda(path[, encoding]) Read graph in LEDA format from path.
parse_leda(lines) Read graph in LEDA format from string or iterable.

9.9.2 read_leda

read_leda(path, encoding=’UTF-8’)
Read graph in LEDA format from path.

Parameters path (file or string) – File or filename to read. Filenames ending in .gz or
.bz2 will be uncompressed.

Returns G

Return type NetworkX graph

Examples

G=nx.read_leda(‘file.leda’)

References

9.9.3 parse_leda

parse_leda(lines)
Read graph in LEDA format from string or iterable.

Parameters lines (string or iterable) – Data in LEDA format.

Returns G

Return type NetworkX graph

Examples

G=nx.parse_leda(string)

470 Chapter 9. Reading and writing graphs

http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html


NetworkX Reference, Release 1.11

References

9.10 YAML

9.10.1 YAML

Read and write NetworkX graphs in YAML format.

“YAML is a data serialization format designed for human readability and interaction with scripting languages.” See
http://www.yaml.org for documentation.

Format

http://pyyaml.org/wiki/PyYAML

read_yaml(path) Read graph in YAML format from path.
write_yaml(G, path[, encoding]) Write graph G in YAML format to path.

9.10.2 read_yaml

read_yaml(path)
Read graph in YAML format from path.

YAML is a data serialization format designed for human readability and interaction with scripting languages 1.

Parameters path (file or string) – File or filename to read. Filenames ending in .gz or
.bz2 will be uncompressed.

Returns G

Return type NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')
>>> G=nx.read_yaml('test.yaml')

References

9.10.3 write_yaml

write_yaml(G, path, encoding=’UTF-8’, **kwds)
Write graph G in YAML format to path.

YAML is a data serialization format designed for human readability and interaction with scripting languages 1.

Parameters

• G (graph) – A NetworkX graph

1 http://www.yaml.org
1 http://www.yaml.org
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• path (file or string) – File or filename to write. Filenames ending in .gz or .bz2
will be compressed.

• encoding (string, optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')

References

9.11 SparseGraph6

9.11.1 Graph6

Graph6

Read and write graphs in graph6 format.

Format

“graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII
characters. Files in these formats have text type and contain one line per graph.”

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

parse_graph6(string) Read a simple undirected graph in graph6 format from string.
read_graph6(path) Read simple undirected graphs in graph6 format from path.
generate_graph6(G[, nodes, header]) Generate graph6 format string from a simple undirected graph.
write_graph6(G, path[, nodes, header]) Write a simple undirected graph to path in graph6 format.

parse_graph6

parse_graph6(string)
Read a simple undirected graph in graph6 format from string.

Parameters string (string) – Data in graph6 format

Returns G

Return type Graph

Raises NetworkXError – If the string is unable to be parsed in graph6 format

Examples

>>> G = nx.parse_graph6('A_')
>>> sorted(G.edges())
[(0, 1)]
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See also:

generate_graph6(), read_graph6(), write_graph6()

References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

read_graph6

read_graph6(path)
Read simple undirected graphs in graph6 format from path.

Parameters path (file or string) – File or filename to write.

Returns G – If the file contains multiple lines then a list of graphs is returned

Return type Graph or list of Graphs

Raises NetworkXError – If the string is unable to be parsed in graph6 format

Examples

>>> nx.write_graph6(nx.Graph([(0,1)]), 'test.g6')
>>> G = nx.read_graph6('test.g6')
>>> sorted(G.edges())
[(0, 1)]

See also:

generate_graph6(), parse_graph6(), write_graph6()

References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

generate_graph6

generate_graph6(G, nodes=None, header=True)
Generate graph6 format string from a simple undirected graph.

Parameters

• G (Graph (undirected)) –

• nodes (list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None
the ordering given by G.nodes() is used.

• header (bool) – If True add ‘>>graph6<<’ string to head of data

Returns s – String in graph6 format

Return type string

Raises NetworkXError – If the graph is directed or has parallel edges
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Examples

>>> G = nx.Graph([(0, 1)])
>>> nx.generate_graph6(G)
'>>graph6<<A_'

See also:

read_graph6(), parse_graph6(), write_graph6()

Notes

The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are
silently ignored.

References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

write_graph6

write_graph6(G, path, nodes=None, header=True)
Write a simple undirected graph to path in graph6 format.

Parameters

• G (Graph (undirected)) –

• path (file or string) – File or filename to write.

• nodes (list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None
the ordering given by G.nodes() is used.

• header (bool) – If True add ‘>>graph6<<’ string to head of data

Raises NetworkXError – If the graph is directed or has parallel edges

Examples

>>> G = nx.Graph([(0, 1)])
>>> nx.write_graph6(G, 'test.g6')

See also:

generate_graph6(), parse_graph6(), read_graph6()

Notes

The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are
silently ignored.
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References

Graph6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

9.11.2 Sparse6

Sparse6

Read and write graphs in sparse6 format.

Format

“graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII
characters. Files in these formats have text type and contain one line per graph.”

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

parse_sparse6(string) Read an undirected graph in sparse6 format from string.
read_sparse6(path) Read an undirected graph in sparse6 format from path.
generate_sparse6(G[, nodes, header]) Generate sparse6 format string from an undirected graph.
write_sparse6(G, path[, nodes, header]) Write graph G to given path in sparse6 format.

parse_sparse6

parse_sparse6(string)
Read an undirected graph in sparse6 format from string.

Parameters string (string) – Data in sparse6 format

Returns G

Return type Graph

Raises NetworkXError – If the string is unable to be parsed in sparse6 format

Examples

>>> G = nx.parse_sparse6(':A_')
>>> sorted(G.edges())
[(0, 1), (0, 1), (0, 1)]

See also:

generate_sparse6(), read_sparse6(), write_sparse6()

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt
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read_sparse6

read_sparse6(path)
Read an undirected graph in sparse6 format from path.

Parameters path (file or string) – File or filename to write.

Returns G – If the file contains multple lines then a list of graphs is returned

Return type Graph/Multigraph or list of Graphs/MultiGraphs

Raises NetworkXError – If the string is unable to be parsed in sparse6 format

Examples

>>> nx.write_sparse6(nx.Graph([(0,1),(0,1),(0,1)]), 'test.s6')
>>> G = nx.read_sparse6('test.s6')
>>> sorted(G.edges())
[(0, 1)]

See also:

generate_sparse6(), read_sparse6(), parse_sparse6()

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

generate_sparse6

generate_sparse6(G, nodes=None, header=True)
Generate sparse6 format string from an undirected graph.

Parameters

• G (Graph (undirected)) –

• nodes (list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None
the ordering given by G.nodes() is used.

• header (bool) – If True add ‘>>sparse6<<’ string to head of data

Returns s – String in sparse6 format

Return type string

Raises NetworkXError – If the graph is directed

Examples

>>> G = nx.MultiGraph([(0, 1), (0, 1), (0, 1)])
>>> nx.generate_sparse6(G)
'>>sparse6<<:A_'

See also:

read_sparse6(), parse_sparse6(), write_sparse6()
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Notes

The format does not support edge or node labels.

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

write_sparse6

write_sparse6(G, path, nodes=None, header=True)
Write graph G to given path in sparse6 format. :param G: :type G: Graph (undirected) :param path: File or
filename to write

Parameters

• nodes (list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None
the ordering given by G.nodes() is used.

• header (bool) – If True add ‘>>sparse6<<’ string to head of data

Raises NetworkXError – If the graph is directed

Examples

>>> G = nx.Graph([(0, 1), (0, 1), (0, 1)])
>>> nx.write_sparse6(G, 'test.s6')

See also:

read_sparse6(), parse_sparse6(), generate_sparse6()

Notes

The format does not support edge or node labels.

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt for details.

9.12 Pajek

9.12.1 Pajek

Read graphs in Pajek format.

This implementation handles directed and undirected graphs including those with self loops and parallel edges.
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Format

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

read_pajek(path[, encoding]) Read graph in Pajek format from path.
write_pajek(G, path[, encoding]) Write graph in Pajek format to path.
parse_pajek(lines) Parse Pajek format graph from string or iterable.

9.12.2 read_pajek

read_pajek(path, encoding=’UTF-8’)
Read graph in Pajek format from path.

Parameters path (file or string) – File or filename to write. Filenames ending in .gz or
.bz2 will be uncompressed.

Returns G

Return type NetworkX MultiGraph or MultiDiGraph.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
>>> G=nx.read_pajek("test.net")

To create a Graph instead of a MultiGraph use

>>> G1=nx.Graph(G)

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

9.12.3 write_pajek

write_pajek(G, path, encoding=’UTF-8’)
Write graph in Pajek format to path.

Parameters

• G (graph) – A Networkx graph

• path (file or string) – File or filename to write. Filenames ending in .gz or .bz2
will be compressed.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
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References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

9.12.4 parse_pajek

parse_pajek(lines)
Parse Pajek format graph from string or iterable.

Parameters lines (string or iterable) – Data in Pajek format.

Returns G

Return type NetworkX graph

See also:

read_pajek()

9.13 GIS Shapefile

9.13.1 Shapefile

Generates a networkx.DiGraph from point and line shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems
software. It is developed and regulated by Esri as a (mostly) open specification for data interoperability among Esri
and other software products.” See http://en.wikipedia.org/wiki/Shapefile for additional information.

read_shp(path[, simplify]) Generates a networkx.DiGraph from shapefiles.
write_shp(G, outdir) Writes a networkx.DiGraph to two shapefiles, edges and nodes.

9.13.2 read_shp

read_shp(path, simplify=True)
Generates a networkx.DiGraph from shapefiles. Point geometries are translated into nodes, lines into edges.
Coordinate tuples are used as keys. Attributes are preserved, line geometries are simplified into start and end
coordinates. Accepts a single shapefile or directory of many shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information
systems software 1.”

Parameters

• path (file or string) – File, directory, or filename to read.

• simplify (bool) – If True, simplify line geometries to start and end coordinates. If
False, and line feature geometry has multiple segments, the non-geometric attributes for
that feature will be repeated for each edge comprising that feature.

Returns G

Return type NetworkX graph

1 http://en.wikipedia.org/wiki/Shapefile
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Examples

>>> G=nx.read_shp('test.shp')

References

9.13.3 write_shp

write_shp(G, outdir)
Writes a networkx.DiGraph to two shapefiles, edges and nodes. Nodes and edges are expected to have a Well
Known Binary (Wkb) or Well Known Text (Wkt) key in order to generate geometries. Also acceptable are nodes
with a numeric tuple key (x,y).

“The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information
systems software 1.”

Parameters outdir (directory path) – Output directory for the two shapefiles.

Returns

Return type None

Examples

nx.write_shp(digraph, ‘/shapefiles’) # doctest +SKIP

References

1 http://en.wikipedia.org/wiki/Shapefile
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CHAPTER 10

Drawing

NetworkX provides basic functionality for visualizing graphs, but its main goal is to enable graph analysis rather than
perform graph visualization. In the future, graph visualization functionality may be removed from NetworkX or only
available as an add-on package.

Proper graph visualization is hard, and we highly recommend that people visualize their graphs with tools dedi-
cated to that task. Notable examples of dedicated and fully-featured graph visualization tools are Cytoscape, Gephi,
Graphviz and, for LaTeX typesetting, PGF/TikZ. To use these and other such tools, you should export your NetworkX
graph into a format that can be read by those tools. For example, Cytoscape can read the GraphML format, and so,
𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑥.𝑤𝑟𝑖𝑡𝑒𝑔𝑟𝑎𝑝ℎ𝑚𝑙(𝐺) might be an appropriate choice.

10.1 Matplotlib

10.1.1 Matplotlib

Draw networks with matplotlib.

See also:

matplotlib http://matplotlib.org/

pygraphviz http://pygraphviz.github.io/

draw(G[, pos, ax, hold]) Draw the graph G with Matplotlib.
draw_networkx(G[, pos, arrows, with_labels]) Draw the graph G using Matplotlib.
draw_networkx_nodes(G, pos[, nodelist, ...]) Draw the nodes of the graph G.
draw_networkx_edges(G, pos[, edgelist, ...]) Draw the edges of the graph G.
draw_networkx_labels(G, pos[, labels, ...]) Draw node labels on the graph G.
draw_networkx_edge_labels(G, pos[, ...]) Draw edge labels.
draw_circular(G, **kwargs) Draw the graph G with a circular layout.
draw_random(G, **kwargs) Draw the graph G with a random layout.
draw_spectral(G, **kwargs) Draw the graph G with a spectral layout.
draw_spring(G, **kwargs) Draw the graph G with a spring layout.
draw_shell(G, **kwargs) Draw networkx graph with shell layout.
draw_graphviz(G[, prog]) Draw networkx graph with graphviz layout.
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10.1.2 draw

draw(G, pos=None, ax=None, hold=None, **kwds)
Draw the graph G with Matplotlib.

Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure
area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis
labels etc.

Parameters

• G (graph) – A networkx graph

• pos (dictionary, optional) – A dictionary with nodes as keys and positions as
values. If not specified a spring layout positioning will be computed. See networkx.layout
for functions that compute node positions.

• ax (Matplotlib Axes object, optional) – Draw the graph in specified Mat-
plotlib axes.

• hold (bool, optional) – Set the Matplotlib hold state. If True subsequent draw com-
mands will be added to the current axes.

• kwds (optional keywords) – See networkx.draw_networkx() for a description of op-
tional keywords.

Examples

>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout

See also:

draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(),
draw_networkx_labels(), draw_networkx_edge_labels()

Notes

This function has the same name as pylab.draw and pyplot.draw so beware when using

>>> from networkx import *

since you might overwrite the pylab.draw function.

With pyplot use

>>> import matplotlib.pyplot as plt
>>> import networkx as nx
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html
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10.1.3 draw_networkx

draw_networkx(G, pos=None, arrows=True, with_labels=True, **kwds)
Draw the graph G using Matplotlib.

Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing fea-
tures. See draw() for simple drawing without labels or axes.

Parameters

• G (graph) – A networkx graph

• pos (dictionary, optional) – A dictionary with nodes as keys and positions as
values. If not specified a spring layout positioning will be computed. See networkx.layout
for functions that compute node positions.

• arrows (bool, optional (default=True)) – For directed graphs, if True draw
arrowheads.

• with_labels (bool, optional (default=True)) – Set to True to draw labels
on the nodes.

• ax (Matplotlib Axes object, optional) – Draw the graph in the specified Mat-
plotlib axes.

• nodelist (list, optional (default G.nodes())) – Draw only specified
nodes

• edgelist (list, optional (default=G.edges())) – Draw only specified
edges

• node_size (scalar or array, optional (default=300)) – Size of nodes.
If an array is specified it must be the same length as nodelist.

• node_color (color string, or array of floats, (default=’r’)) –
Node color. Can be a single color format string, or a sequence of colors with the same
length as nodelist. If numeric values are specified they will be mapped to colors using the
cmap and vmin,vmax parameters. See matplotlib.scatter for more details.

• node_shape (string, optional (default=’o’)) – The shape of the node.
Specification is as matplotlib.scatter marker, one of ‘so^>v<dph8’.

• alpha (float, optional (default=1.0)) – The node and edge transparency

• cmap (Matplotlib colormap, optional (default=None)) – Colormap for
mapping intensities of nodes

• vmin,vmax (float, optional (default=None)) – Minimum and maximum for
node colormap scaling

• linewidths ([None | scalar | sequence]) – Line width of symbol border (de-
fault =1.0)

• width (float, optional (default=1.0)) – Line width of edges

• edge_color (color string, or array of floats (default=’r’)) –
Edge color. Can be a single color format string, or a sequence of colors with the same
length as edgelist. If numeric values are specified they will be mapped to colors using the
edge_cmap and edge_vmin,edge_vmax parameters.

• edge_cmap (Matplotlib colormap, optional (default=None)) – Col-
ormap for mapping intensities of edges
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• edge_vmin,edge_vmax (floats, optional (default=None)) – Minimum
and maximum for edge colormap scaling

• style (string, optional (default=’solid’)) – Edge line style
(solid|dashed|dotted,dashdot)

• labels (dictionary, optional (default=None)) – Node labels in a dictio-
nary keyed by node of text labels

• font_size (int, optional (default=12)) – Font size for text labels

• font_color (string, optional (default=’k’ black)) – Font color string

• font_weight (string, optional (default=’normal’)) – Font weight

• font_family (string, optional (default=’sans-serif’)) – Font family

• label (string, optional) – Label for graph legend

Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn at the head end. Arrows can be turned off
with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.

Examples

>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout

>>> import matplotlib.pyplot as plt
>>> limits=plt.axis('off') # turn of axis

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(),
draw_networkx_edge_labels()

10.1.4 draw_networkx_nodes

draw_networkx_nodes(G, pos, nodelist=None, node_size=300, node_color=’r’, node_shape=’o’, al-
pha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, la-
bel=None, **kwds)

Draw the nodes of the graph G.

This draws only the nodes of the graph G.

Parameters

• G (graph) – A networkx graph

• pos (dictionary) – A dictionary with nodes as keys and positions as values. Positions
should be sequences of length 2.

• ax (Matplotlib Axes object, optional) – Draw the graph in the specified Mat-
plotlib axes.
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• nodelist (list, optional) – Draw only specified nodes (default G.nodes())

• node_size (scalar or array) – Size of nodes (default=300). If an array is specified
it must be the same length as nodelist.

• node_color (color string, or array of floats) – Node color. Can be a
single color format string (default=’r’), or a sequence of colors with the same length as
nodelist. If numeric values are specified they will be mapped to colors using the cmap and
vmin,vmax parameters. See matplotlib.scatter for more details.

• node_shape (string) – The shape of the node. Specification is as matplotlib.scatter
marker, one of ‘so^>v<dph8’ (default=’o’).

• alpha (float) – The node transparency (default=1.0)

• cmap (Matplotlib colormap) – Colormap for mapping intensities of nodes (de-
fault=None)

• vmin,vmax (floats) – Minimum and maximum for node colormap scaling (de-
fault=None)

• linewidths ([None | scalar | sequence]) – Line width of symbol border (de-
fault =1.0)

• label ([None| string]) – Label for legend

Returns 𝑃𝑎𝑡ℎ𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 of the nodes.

Return type matplotlib.collections.PathCollection

Examples

>>> G=nx.dodecahedral_graph()
>>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx(), draw_networkx_edges(), draw_networkx_labels(),
draw_networkx_edge_labels()

10.1.5 draw_networkx_edges

draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color=’k’, style=’solid’, alpha=1.0,
edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, ar-
rows=True, label=None, **kwds)

Draw the edges of the graph G.

This draws only the edges of the graph G.

Parameters

• G (graph) – A networkx graph

• pos (dictionary) – A dictionary with nodes as keys and positions as values. Positions
should be sequences of length 2.

• edgelist (collection of edge tuples) – Draw only specified
edges(default=G.edges())

• width (float, or array of floats) – Line width of edges (default=1.0)
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• edge_color (color string, or array of floats) – Edge color. Can be a
single color format string (default=’r’), or a sequence of colors with the same length as
edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap
and edge_vmin,edge_vmax parameters.

• style (string) – Edge line style (default=’solid’) (solid|dashed|dotted,dashdot)

• alpha (float) – The edge transparency (default=1.0)

• cmap (edge) – Colormap for mapping intensities of edges (default=None)

• edge_vmin,edge_vmax (floats) – Minimum and maximum for edge colormap scal-
ing (default=None)

• ax (Matplotlib Axes object, optional) – Draw the graph in the specified Mat-
plotlib axes.

• arrows (bool, optional (default=True)) – For directed graphs, if True draw
arrowheads.

• label ([None| string]) – Label for legend

Returns 𝐿𝑖𝑛𝑒𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 of the edges

Return type matplotlib.collection.LineCollection

Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn at the head end. Arrows can be turned off
with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.

Examples

>>> G=nx.dodecahedral_graph()
>>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_labels(),
draw_networkx_edge_labels()

10.1.6 draw_networkx_labels

draw_networkx_labels(G, pos, labels=None, font_size=12, font_color=’k’, font_family=’sans-serif’,
font_weight=’normal’, alpha=1.0, bbox=None, ax=None, **kwds)

Draw node labels on the graph G.

Parameters

• G (graph) – A networkx graph

• pos (dictionary) – A dictionary with nodes as keys and positions as values. Positions
should be sequences of length 2.

• labels (dictionary, optional (default=None)) – Node labels in a dictio-
nary keyed by node of text labels

• font_size (int) – Font size for text labels (default=12)
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• font_color (string) – Font color string (default=’k’ black)

• font_family (string) – Font family (default=’sans-serif’)

• font_weight (string) – Font weight (default=’normal’)

• alpha (float) – The text transparency (default=1.0)

• ax (Matplotlib Axes object, optional) – Draw the graph in the specified Mat-
plotlib axes.

Returns 𝑑𝑖𝑐𝑡 of labels keyed on the nodes

Return type dict

Examples

>>> G=nx.dodecahedral_graph()
>>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(),
draw_networkx_edge_labels()

10.1.7 draw_networkx_edge_labels

draw_networkx_edge_labels(G, pos, edge_labels=None, label_pos=0.5, font_size=10,
font_color=’k’, font_family=’sans-serif’, font_weight=’normal’,
alpha=1.0, bbox=None, ax=None, rotate=True, **kwds)

Draw edge labels.

Parameters

• G (graph) – A networkx graph

• pos (dictionary) – A dictionary with nodes as keys and positions as values. Positions
should be sequences of length 2.

• ax (Matplotlib Axes object, optional) – Draw the graph in the specified Mat-
plotlib axes.

• alpha (float) – The text transparency (default=1.0)

• edge_labels (dictionary) – Edge labels in a dictionary keyed by edge two-tuple of
text labels (default=None). Only labels for the keys in the dictionary are drawn.

• label_pos (float) – Position of edge label along edge (0=head, 0.5=center, 1=tail)

• font_size (int) – Font size for text labels (default=12)

• font_color (string) – Font color string (default=’k’ black)

• font_weight (string) – Font weight (default=’normal’)

• font_family (string) – Font family (default=’sans-serif’)

• bbox (Matplotlib bbox) – Specify text box shape and colors.

• clip_on (bool) – Turn on clipping at axis boundaries (default=True)
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Returns 𝑑𝑖𝑐𝑡 of labels keyed on the edges

Return type dict

Examples

>>> G=nx.dodecahedral_graph()
>>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(),
draw_networkx_labels()

10.1.8 draw_circular

draw_circular(G, **kwargs)
Draw the graph G with a circular layout.

Parameters

• G (graph) – A networkx graph

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter which is not used by this func-
tion.

10.1.9 draw_random

draw_random(G, **kwargs)
Draw the graph G with a random layout.

Parameters

• G (graph) – A networkx graph

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter which is not used by this func-
tion.

10.1.10 draw_spectral

draw_spectral(G, **kwargs)
Draw the graph G with a spectral layout.

Parameters

• G (graph) – A networkx graph

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter which is not used by this func-
tion.
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10.1.11 draw_spring

draw_spring(G, **kwargs)
Draw the graph G with a spring layout.

Parameters

• G (graph) – A networkx graph

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter which is not used by this func-
tion.

10.1.12 draw_shell

draw_shell(G, **kwargs)
Draw networkx graph with shell layout.

Parameters

• G (graph) – A networkx graph

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter which is not used by this func-
tion.

10.1.13 draw_graphviz

draw_graphviz(G, prog=’neato’, **kwargs)
Draw networkx graph with graphviz layout.

Parameters

• G (graph) – A networkx graph

• prog (string, optional) – Name of Graphviz layout program

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords.

10.2 Graphviz AGraph (dot)

10.2.1 Graphviz AGraph

Interface to pygraphviz AGraph class.

Examples

>>> G = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(G)
>>> H = nx.nx_agraph.from_agraph(A)

See also:

Pygraphviz http://pygraphviz.github.io/
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from_agraph(A[, create_using]) Return a NetworkX Graph or DiGraph from a PyGraphviz graph.
to_agraph(N) Return a pygraphviz graph from a NetworkX graph N.
write_dot(G, path) Write NetworkX graph G to Graphviz dot format on path.
read_dot(path) Return a NetworkX graph from a dot file on path.
graphviz_layout(G[, prog, root, args]) Create node positions for G using Graphviz.
pygraphviz_layout(G[, prog, root, args]) Create node positions for G using Graphviz.

10.2.2 from_agraph

from_agraph(A, create_using=None)
Return a NetworkX Graph or DiGraph from a PyGraphviz graph.

Parameters

• A (PyGraphviz AGraph) – A graph created with PyGraphviz

• create_using (NetworkX graph class instance) – The output is created us-
ing the given graph class instance

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(K5)
>>> G = nx.nx_agraph.from_agraph(A)
>>> G = nx.nx_agraph.from_agraph(A)

Notes

The Graph G will have a dictionary G.graph_attr containing the default graphviz attributes for graphs, nodes
and edges.

Default node attributes will be in the dictionary G.node_attr which is keyed by node.

Edge attributes will be returned as edge data in G. With edge_attr=False the edge data will be the Graphviz edge
weight attribute or the value 1 if no edge weight attribute is found.

10.2.3 to_agraph

to_agraph(N)
Return a pygraphviz graph from a NetworkX graph N.

Parameters N (NetworkX graph) – A graph created with NetworkX

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(K5)
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Notes

If N has an dict N.graph_attr an attempt will be made first to copy properties attached to the graph (see
from_agraph) and then updated with the calling arguments if any.

10.2.4 write_dot

write_dot(G, path)
Write NetworkX graph G to Graphviz dot format on path.

Parameters

• G (graph) – A networkx graph

• path (filename) – Filename or file handle to write

10.2.5 read_dot

read_dot(path)
Return a NetworkX graph from a dot file on path.

Parameters path (file or string) – File name or file handle to read.

10.2.6 graphviz_layout

graphviz_layout(G, prog=’neato’, root=None, args=’‘)
Create node positions for G using Graphviz.

Parameters

• G (NetworkX graph) – A graph created with NetworkX

• prog (string) – Name of Graphviz layout program

• root (string, optional) – Root node for twopi layout

• args (string, optional) – Extra arguments to Graphviz layout program

• Returns (dictionary) – Dictionary of x,y, positions keyed by node.

Examples

>>> G = nx.petersen_graph()
>>> pos = nx.nx_agraph.graphviz_layout(G)
>>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot')

Notes

This is a wrapper for pygraphviz_layout.
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10.2.7 pygraphviz_layout

pygraphviz_layout(G, prog=’neato’, root=None, args=’‘)
Create node positions for G using Graphviz.

Parameters

• G (NetworkX graph) – A graph created with NetworkX

• prog (string) – Name of Graphviz layout program

• root (string, optional) – Root node for twopi layout

• args (string, optional) – Extra arguments to Graphviz layout program

• Returns (dictionary) – Dictionary of x,y, positions keyed by node.

Examples

>>> G = nx.petersen_graph()
>>> pos = nx.nx_agraph.graphviz_layout(G)
>>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot')

10.3 Graphviz with pydot

10.3.1 Pydot

Import and export NetworkX graphs in Graphviz dot format using pydotplus.

Either this module or nx_agraph can be used to interface with graphviz.

See also:

PyDotPlus https://github.com/carlos-jenkins/pydotplus

Graphviz http://www.research.att.com/sw/tools/graphviz/

DOT

from_pydot(P) Return a NetworkX graph from a Pydot graph.
to_pydot(N[, strict]) Return a pydot graph from a NetworkX graph N.
write_dot(G, path) Write NetworkX graph G to Graphviz dot format on path.
read_dot(path) Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.
graphviz_layout(G[, prog, root]) Create node positions using Pydot and Graphviz.
pydot_layout(G[, prog, root]) Create node positions using Pydot and Graphviz.

10.3.2 from_pydot

from_pydot(P)
Return a NetworkX graph from a Pydot graph.

Parameters P (Pydot graph) – A graph created with Pydot

Returns G – A MultiGraph or MultiDiGraph.

Return type NetworkX multigraph
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Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_pydot.to_pydot(K5)
>>> G = nx.nx_pydot.from_pydot(A) # return MultiGraph

# make a Graph instead of MultiGraph >>> G = nx.Graph(nx.nx_pydot.from_pydot(A))

10.3.3 to_pydot

to_pydot(N, strict=True)
Return a pydot graph from a NetworkX graph N.

Parameters N (NetworkX graph) – A graph created with NetworkX

Examples

>>> K5 = nx.complete_graph(5)
>>> P = nx.nx_pydot.to_pydot(K5)

Notes

10.3.4 write_dot

write_dot(G, path)
Write NetworkX graph G to Graphviz dot format on path.

Path can be a string or a file handle.

10.3.5 read_dot

read_dot(path)
Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

Parameters path (filename or file handle) –

Returns G – A MultiGraph or MultiDiGraph.

Return type NetworkX multigraph

Notes

Use G = nx.Graph(read_dot(path)) to return a Graph instead of a MultiGraph.

10.3.6 graphviz_layout

graphviz_layout(G, prog=’neato’, root=None, **kwds)
Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.
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Examples

>>> G = nx.complete_graph(4)
>>> pos = nx.nx_pydot.graphviz_layout(G)
>>> pos = nx.nx_pydot.graphviz_layout(G, prog='dot')

Notes

This is a wrapper for pydot_layout.

10.3.7 pydot_layout

pydot_layout(G, prog=’neato’, root=None, **kwds)
Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

Examples

>>> G = nx.complete_graph(4)
>>> pos = nx.nx_pydot.pydot_layout(G)
>>> pos = nx.nx_pydot.pydot_layout(G, prog='dot')

10.4 Graph Layout

10.4.1 Layout

Node positioning algorithms for graph drawing.

The default scales and centering for these layouts are typically squares with side [0, 1] or [0, scale]. The two circular
layout routines (circular_layout and shell_layout) have size [-1, 1] or [-scale, scale].

circular_layout(G[, dim, scale, center]) Position nodes on a circle.
fruchterman_reingold_layout(G[, dim, k, ...]) Position nodes using Fruchterman-Reingold force-directed algorithm.
random_layout(G[, dim, scale, center]) Position nodes uniformly at random.
shell_layout(G[, nlist, dim, scale, center]) Position nodes in concentric circles.
spring_layout(G[, dim, k, pos, fixed, ...]) Position nodes using Fruchterman-Reingold force-directed algorithm.
spectral_layout(G[, dim, weight, scale, center]) Position nodes using the eigenvectors of the graph Laplacian.

10.4.2 circular_layout

circular_layout(G, dim=2, scale=1.0, center=None)
Position nodes on a circle.

Parameters

• G (NetworkX graph or list of nodes) –

• dim (int) – Dimension of layout, currently only dim=2 is supported
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• scale (float (default 1)) – Scale factor for positions, i.e. radius of circle.

• center (array-like (default origin)) – Coordinate around which to center
the layout.

Returns A dictionary of positions keyed by node

Return type dict

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.circular_layout(G)

Notes

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

10.4.3 fruchterman_reingold_layout

fruchterman_reingold_layout(G, dim=2, k=None, pos=None, fixed=None, iterations=50,
weight=’weight’, scale=1.0, center=None)

Position nodes using Fruchterman-Reingold force-directed algorithm.

Parameters

• G (NetworkX graph) –

• dim (int) – Dimension of layout

• k (float (default=None)) – Optimal distance between nodes. If None the distance
is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther
apart.

• pos (dict or None optional (default=None)) – Initial positions for nodes as
a dictionary with node as keys and values as a list or tuple. If None, then use random initial
positions.

• fixed (list or None optional (default=None)) – Nodes to keep fixed at
initial position. If any nodes are fixed, the scale and center features are not used.

• iterations (int optional (default=50)) – Number of iterations of spring-
force relaxation

• weight (string or None optional (default=’weight’)) – The edge at-
tribute that holds the numerical value used for the effective spring constant. If None, edge
weights are 1.

• scale (float (default=1.0)) – Scale factor for positions. The nodes are positioned
in a box of size 𝑠𝑐𝑎𝑙𝑒 in each dim centered at 𝑐𝑒𝑛𝑡𝑒𝑟.

• center (array-like (default scale/2 in each dim)) – Coordinate
around which to center the layout.

Returns A dictionary of positions keyed by node

Return type dict
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Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)

# this function has two names: # spring_layout and fruchterman_reingold_layout >>>
pos=nx.fruchterman_reingold_layout(G)

10.4.4 random_layout

random_layout(G, dim=2, scale=1.0, center=None)
Position nodes uniformly at random.

For every node, a position is generated by choosing each of dim coordinates uniformly at random on the default
interval [0.0, 1.0), or on an interval of length 𝑠𝑐𝑎𝑙𝑒 centered at 𝑐𝑒𝑛𝑡𝑒𝑟.

NumPy (http://scipy.org) is required for this function.

Parameters

• G (NetworkX graph or list of nodes) – A position will be assigned to every
node in G.

• dim (int) – Dimension of layout.

• scale (float (default 1)) – Scale factor for positions

• center (array-like (default scale*0.5 in each dim)) – Coordinate
around which to center the layout.

Returns pos – A dictionary of positions keyed by node

Return type dict

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout(G)

10.4.5 shell_layout

shell_layout(G, nlist=None, dim=2, scale=1.0, center=None)
Position nodes in concentric circles.

Parameters

• G (NetworkX graph or list of nodes) –

• nlist (list of lists) – List of node lists for each shell.

• dim (int) – Dimension of layout, currently only dim=2 is supported

• scale (float (default 1)) – Scale factor for positions, i.e.radius of largest shell

• center (array-like (default origin)) – Coordinate around which to center
the layout.

Returns A dictionary of positions keyed by node
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Return type dict

Examples

>>> G = nx.path_graph(4)
>>> shells = [[0], [1,2,3]]
>>> pos = nx.shell_layout(G, shells)

Notes

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

10.4.6 spring_layout

spring_layout(G, dim=2, k=None, pos=None, fixed=None, iterations=50, weight=’weight’, scale=1.0,
center=None)

Position nodes using Fruchterman-Reingold force-directed algorithm.

Parameters

• G (NetworkX graph) –

• dim (int) – Dimension of layout

• k (float (default=None)) – Optimal distance between nodes. If None the distance
is set to 1/sqrt(n) where n is the number of nodes. Increase this value to move nodes farther
apart.

• pos (dict or None optional (default=None)) – Initial positions for nodes as
a dictionary with node as keys and values as a list or tuple. If None, then use random initial
positions.

• fixed (list or None optional (default=None)) – Nodes to keep fixed at
initial position. If any nodes are fixed, the scale and center features are not used.

• iterations (int optional (default=50)) – Number of iterations of spring-
force relaxation

• weight (string or None optional (default=’weight’)) – The edge at-
tribute that holds the numerical value used for the effective spring constant. If None, edge
weights are 1.

• scale (float (default=1.0)) – Scale factor for positions. The nodes are positioned
in a box of size 𝑠𝑐𝑎𝑙𝑒 in each dim centered at 𝑐𝑒𝑛𝑡𝑒𝑟.

• center (array-like (default scale/2 in each dim)) – Coordinate
around which to center the layout.

Returns A dictionary of positions keyed by node

Return type dict

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)
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# this function has two names: # spring_layout and fruchterman_reingold_layout >>>
pos=nx.fruchterman_reingold_layout(G)

10.4.7 spectral_layout

spectral_layout(G, dim=2, weight=’weight’, scale=1.0, center=None)
Position nodes using the eigenvectors of the graph Laplacian.

Parameters

• G (NetworkX graph or list of nodes) –

• dim (int) – Dimension of layout

• weight (string or None optional (default=’weight’)) – The edge at-
tribute that holds the numerical value used for the edge weight. If None, then all edge
weights are 1.

• scale (float optional (default 1)) – Scale factor for positions, i.e. nodes
placed in a box with side [0, scale] or centered on 𝑐𝑒𝑛𝑡𝑒𝑟 if provided.

• center (array-like (default scale/2 in each dim)) – Coordinate
around which to center the layout.

Returns A dictionary of positions keyed by node

Return type dict

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spectral_layout(G)

Notes

Directed graphs will be considered as undirected graphs when positioning the nodes.

For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK).

498 Chapter 10. Drawing

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/stdtypes.html#dict


CHAPTER 11

Exceptions

11.1 Exceptions

Base exceptions and errors for NetworkX.

class NetworkXException
Base class for exceptions in NetworkX.

class NetworkXError
Exception for a serious error in NetworkX

class NetworkXPointlessConcept
Harary, F. and Read, R. “Is the Null Graph a Pointless Concept?” In Graphs and Combinatorics Conference,
George Washington University. New York: Springer-Verlag, 1973.

class NetworkXAlgorithmError
Exception for unexpected termination of algorithms.

class NetworkXUnfeasible
Exception raised by algorithms trying to solve a problem instance that has no feasible solution.

class NetworkXNoPath
Exception for algorithms that should return a path when running on graphs where such a path does not exist.

class NetworkXUnbounded
Exception raised by algorithms trying to solve a maximization or a minimization problem instance that is un-
bounded.
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CHAPTER 12

Utilities

12.1 Helper Functions

Miscellaneous Helpers for NetworkX.

These are not imported into the base networkx namespace but can be accessed, for example, as

>>> import networkx
>>> networkx.utils.is_string_like('spam')
True

is_string_like(obj) Check if obj is string.
flatten(obj[, result]) Return flattened version of (possibly nested) iterable object.
iterable(obj) Return True if obj is iterable with a well-defined len().
is_list_of_ints(intlist) Return True if list is a list of ints.
make_str(x) Return the string representation of t.
generate_unique_node() Generate a unique node label.
default_opener(filename) Opens 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒 using system’s default program.

12.1.1 is_string_like

is_string_like(obj)
Check if obj is string.

12.1.2 flatten

flatten(obj, result=None)
Return flattened version of (possibly nested) iterable object.

12.1.3 iterable

iterable(obj)
Return True if obj is iterable with a well-defined len().
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12.1.4 is_list_of_ints

is_list_of_ints(intlist)
Return True if list is a list of ints.

12.1.5 make_str

make_str(x)
Return the string representation of t.

12.1.6 generate_unique_node

generate_unique_node()
Generate a unique node label.

12.1.7 default_opener

default_opener(filename)
Opens 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒 using system’s default program.

Parameters filename (str) – The path of the file to be opened.

12.2 Data Structures and Algorithms

Union-find data structure.

UnionFind.union(*objects) Find the sets containing the objects and merge them all.

12.2.1 union

UnionFind.union(*objects)
Find the sets containing the objects and merge them all.

12.3 Random Sequence Generators

Utilities for generating random numbers, random sequences, and random selections.

create_degree_sequence(n[, sfunction, max_tries])
pareto_sequence(n[, exponent]) Return sample sequence of length n from a Pareto distribution.
powerlaw_sequence(n[, exponent]) Return sample sequence of length n from a power law distribution.
uniform_sequence(n) Return sample sequence of length n from a uniform distribution.
cumulative_distribution(distribution) Return normalized cumulative distribution from discrete distribution.
discrete_sequence(n[, distribution, ...]) Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.
zipf_sequence(n[, alpha, xmin]) Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum value xmin.
zipf_rv(alpha[, xmin, seed]) Return a random value chosen from the Zipf distribution.
random_weighted_sample(mapping, k) Return k items without replacement from a weighted sample.

Continued on next page
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Table 12.3 – continued from previous page
weighted_choice(mapping) Return a single element from a weighted sample.

12.3.1 create_degree_sequence

create_degree_sequence(n, sfunction=None, max_tries=50, **kwds)

12.3.2 pareto_sequence

pareto_sequence(n, exponent=1.0)
Return sample sequence of length n from a Pareto distribution.

12.3.3 powerlaw_sequence

powerlaw_sequence(n, exponent=2.0)
Return sample sequence of length n from a power law distribution.

12.3.4 uniform_sequence

uniform_sequence(n)
Return sample sequence of length n from a uniform distribution.

12.3.5 cumulative_distribution

cumulative_distribution(distribution)
Return normalized cumulative distribution from discrete distribution.

12.3.6 discrete_sequence

discrete_sequence(n, distribution=None, cdistribution=None)
Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.

One of the following must be specified.

distribution = histogram of values, will be normalized

cdistribution = normalized discrete cumulative distribution

12.3.7 zipf_sequence

zipf_sequence(n, alpha=2.0, xmin=1)
Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum
value xmin.

See also:

zipf_rv()
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12.3.8 zipf_rv

zipf_rv(alpha, xmin=1, seed=None)
Return a random value chosen from the Zipf distribution.

The return value is an integer drawn from the probability distribution ::math:

p(x)=\frac{x^{-\alpha}}{\zeta(\alpha,x_{min})},

where 𝜁(𝛼, 𝑥𝑚𝑖𝑛) is the Hurwitz zeta function.

Parameters

• alpha (float) – Exponent value of the distribution

• xmin (int) – Minimum value

• seed (int) – Seed value for random number generator

Returns x – Random value from Zipf distribution

Return type int

Raises ValueError: – If xmin < 1 or If alpha <= 1

Notes

The rejection algorithm generates random values for a the power-law distribution in uniformly bounded expected
time dependent on parameters. See [1] for details on its operation.

Examples

>>> nx.zipf_rv(alpha=2, xmin=3, seed=42)

References

..[1] Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.

12.3.9 random_weighted_sample

random_weighted_sample(mapping, k)
Return k items without replacement from a weighted sample.

The input is a dictionary of items with weights as values.

12.3.10 weighted_choice

weighted_choice(mapping)
Return a single element from a weighted sample.

The input is a dictionary of items with weights as values.
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open_file(path_arg[, mode]) Decorator to ensure clean opening and closing of files.

12.4.1 open_file

open_file(path_arg, mode=’r’)
Decorator to ensure clean opening and closing of files.

Parameters

• path_arg (int) – Location of the path argument in args. Even if the argument is a
named positional argument (with a default value), you must specify its index as a positional
argument.

• mode (str) – String for opening mode.

Returns _open_file – Function which cleanly executes the io.

Return type function

Examples

Decorate functions like this:

@open_file(0,'r')
def read_function(pathname):

pass

@open_file(1,'w')
def write_function(G,pathname):

pass

@open_file(1,'w')
def write_function(G, pathname='graph.dot')

pass

@open_file('path', 'w+')
def another_function(arg, **kwargs):

path = kwargs['path']
pass

12.5 Cuthill-Mckee Ordering

Cuthill-McKee ordering of graph nodes to produce sparse matrices

cuthill_mckee_ordering(G[, heuristic]) Generate an ordering (permutation) of the graph nodes to make a sparse matrix.
reverse_cuthill_mckee_ordering(G[, heuristic]) Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

12.5.1 cuthill_mckee_ordering

cuthill_mckee_ordering(G, heuristic=None)
Generate an ordering (permutation) of the graph nodes to make a sparse matrix.
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Uses the Cuthill-McKee heuristic (based on breadth-first search) 1.

Parameters

• G (graph) – A NetworkX graph

• heuristic (function, optional) – Function to choose starting node for RCM al-
gorithm. If None a node from a psuedo-peripheral pair is used. A user-defined function can
be supplied that takes a graph object and returns a single node.

Returns nodes – Generator of nodes in Cuthill-McKee ordering.

Return type generator

Examples

>>> from networkx.utils import cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)

Smallest degree node as heuristic function:

>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))

See also:

reverse_cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete 2.

References

12.5.2 reverse_cuthill_mckee_ordering

reverse_cuthill_mckee_ordering(G, heuristic=None)
Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) 1.

Parameters

• G (graph) – A NetworkX graph

• heuristic (function, optional) – Function to choose starting node for RCM al-
gorithm. If None a node from a psuedo-peripheral pair is used. A user-defined function can
be supplied that takes a graph object and returns a single node.

Returns nodes – Generator of nodes in reverse Cuthill-McKee ordering.

1 E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969.
http://doi.acm.org/10.1145/800195.805928

2 Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA.
1 E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices, In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969.

http://doi.acm.org/10.1145/800195.805928
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Return type generator

Examples

>>> from networkx.utils import reverse_cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(reverse_cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)

Smallest degree node as heuristic function:

>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))

See also:

cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete 2.

References

12.6 Context Managers

reversed(*args, **kwds) A context manager for temporarily reversing a directed graph in place.

12.6.1 reversed

reversed(*args, **kwds)
A context manager for temporarily reversing a directed graph in place.

This is a no-op for undirected graphs.

Parameters G (graph) – A NetworkX graph.

2 Steven S. Skiena. 1997. The Algorithm Design Manual. Springer-Verlag New York, Inc., New York, NY, USA.
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CHAPTER 13

License

NetworkX is distributed with the BSD license.

Copyright (C) 2004-2016, NetworkX Developers
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the NetworkX Developers nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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CHAPTER 14

Citing

To cite NetworkX please use the following publication:

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using
NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught,
and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug 2008
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CHAPTER 15

Credits

NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart, and has been developed with the
help of many others. Thanks to everyone who has improved NetworkX by contributing code, bug reports (and fixes),
documentation, and input on design, features, and the future of NetworkX.

15.1 Contributions

This section aims to provide a list of people and projects that have contributed to networkx. It is intended to be an
inclusive list, and anyone who has contributed and wishes to make that contribution known is welcome to add an entry
into this file. Generally, no name should be added to this list without the approval of the person associated with that
name.

Creating a comprehensive list of contributors can be difficult, and the list within this file is almost certainly incomplete.
Contributors include testers, bug reporters, contributors who wish to remain anonymous, funding sources, academic
advisors, end users, and even build/integration systems (such as TravisCI, coveralls, and readthedocs).

Do you want to make your contribution known? If you have commit access, edit this file and add your name. If you
do not have commit access, feel free to open an issue, submit a pull request, or get in contact with one of the official
team members.

A supplementary (but still incomplete) list of contributors is given by the list of names that have commits in
networkx‘s git repository. This can be obtained via:

git log --raw | grep "^Author: " | sort | uniq

A historical, partial listing of contributors and their contributions to some of the earlier versions of NetworkX can be
found here.

15.1.1 Original Authors

Aric Hagberg
Dan Schult
Pieter Swart
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15.1.2 Contributors

Optionally, add your desired name and include a few relevant links. The order is partially historical, and now, mostly
arbitrary.

• Aric Hagberg, GitHub: hagberg

• Dan Schult, GitHub: dschult

• Pieter Swart

• Katy Bold

• Hernan Rozenfeld

• Brendt Wohlberg

• Jim Bagrow

• Holly Johnsen

• Arnar Flatberg

• Chris Myers

• Joel Miller

• Keith Briggs

• Ignacio Rozada

• Phillipp Pagel

• Sverre Sundsdal

• Ross M. Richardson

• Eben Kenah

• Sasha Gutfriend

• Udi Weinsberg

• Matteo Dell’Amico

• Andrew Conway

• Raf Guns

• Salim Fadhley

• Matteo Dell’Amico

• Fabrice Desclaux

• Arpad Horvath

• Minh Van Nguyen

• Willem Ligtenberg

• Loïc Séguin-C.

• Paul McGuire

• Jesus Cerquides

• Ben Edwards

• Jon Olav Vik
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• Hugh Brown

• Ben Reilly

• Leo Lopes

• Jordi Torrents, GitHub: jtorrents

• Dheeraj M R

• Franck Kalala

• Simon Knight

• Conrad Lee

• Sérgio Nery Simões

• Robert King

• Nick Mancuso

• Brian Cloteaux

• Alejandro Weinstein

• Dustin Smith

• Mathieu Larose

• Vincent Gauthier

• Sérgio Nery Simões

• chebee7i, GitHub: chebee7i

• Jeffrey Finkelstein

• Jean-Gabriel Young, Github: jg-you

• Andrey Paramonov, http://aparamon.msk.ru

• Mridul Seth, GitHub: MridulS

• Thodoris Sotiropoulos, GitHub: theosotr

• Konstantinos Karakatsanis, GitHub: k-karakatsanis

• Ryan Nelson, GitHub: rnelsonchem

15.2 Support

networkx and those who have contributed to networkx have received support throughout the years from a variety
of sources. We list them below. If you have provided support to networkx and a support acknowledgment does not
appear below, please help us remedy the situation, and similarly, please let us know if you’d like something modified
or corrected.

15.2.1 Research Groups

networkx acknowledges support from the following:

• Center for Nonlinear Studies, Los Alamos National Laboratory, PI: Aric Hagberg

• Open Source Programs Office, Google

15.2. Support 515

https://github.com/jtorrents
https://github.com/chebee7i
https://github.com/jgyou
http://aparamon.msk.ru
https://github.com/MridulS
https://github.com/theosotr
https://github.com/k-karakatsanis
https://github.com/rnelsonchem
http://cnls.lanl.gov
https://developers.google.com/open-source/


NetworkX Reference, Release 1.11

• Complexity Sciences Center, Department of Physics, University of California-Davis, PI: James P. Crutchfield

• Center for Complexity and Collective Computation, Wisconsin Institute for Discovery, University of Wisconsin-
Madison, PIs: Jessica C. Flack and David C. Krakauer

15.2.2 Funding

networkx acknowledges support from the following:

• Google Summer of Code via Python Software Foundation

• U.S. Army Research Office grant W911NF-12-1-0288

• DARPA Physical Intelligence Subcontract No. 9060-000709

• NSF Grant No. PHY-0748828

• John Templeton Foundation through a grant to the Santa Fe Institute to study complexity

• U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-13-1-0340
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CHAPTER 16

Glossary

dictionary A Python dictionary maps keys to values. Also known as “hashes”, or “associative arrays”. See
http://docs.python.org/tutorial/datastructures.html#dictionaries

ebunch An iteratable container of edge tuples like a list, iterator, or file.

edge Edges are either two-tuples of nodes (u,v) or three tuples of nodes with an edge attribute dictionary (u,v,dict).

edge attribute Edges can have arbitrary Python objects assigned as attributes by using keyword/value pairs when
adding an edge assigning to the G.edge[u][v] attribute dictionary for the specified edge u-v.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable objects
which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is their id().

Definition from http://docs.python.org/glossary.html

nbunch An nbunch is any iterable container of nodes that is not itself a node in the graph. It can be an iterable or an
iterator, e.g. a list, set, graph, file, etc..

node A node can be any hashable Python object except None.

node attribute Nodes can have arbitrary Python objects assigned as attributes by using keyword/value pairs when
adding a node or assigning to the G.node[n] attribute dictionary for the specified node n.
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Python Module Index

a
networkx.algorithms.approximation, 131
networkx.algorithms.approximation.clique,

135
networkx.algorithms.approximation.clustering_coefficient,

136
networkx.algorithms.approximation.connectivity,

131
networkx.algorithms.approximation.dominating_set,

136
networkx.algorithms.approximation.independent_set,

137
networkx.algorithms.approximation.kcomponents,

133
networkx.algorithms.approximation.matching,

139
networkx.algorithms.approximation.ramsey,

140
networkx.algorithms.approximation.vertex_cover,

140
networkx.algorithms.assortativity, 141
networkx.algorithms.bipartite, 149
networkx.algorithms.bipartite.basic, 150
networkx.algorithms.bipartite.centrality,

169
networkx.algorithms.bipartite.cluster,

164
networkx.algorithms.bipartite.generators,

171
networkx.algorithms.bipartite.matching,

154
networkx.algorithms.bipartite.matrix,

156
networkx.algorithms.bipartite.projection,

157
networkx.algorithms.bipartite.redundancy,

168
networkx.algorithms.bipartite.spectral,

163
networkx.algorithms.block, 176

networkx.algorithms.boundary, 177
networkx.algorithms.centrality, 178
networkx.algorithms.chordal.chordal_alg,

198
networkx.algorithms.clique, 201
networkx.algorithms.cluster, 204
networkx.algorithms.coloring, 207
networkx.algorithms.community, 209
networkx.algorithms.community.kclique,

209
networkx.algorithms.components, 209
networkx.algorithms.components.attracting,

218
networkx.algorithms.components.biconnected,

220
networkx.algorithms.components.connected,

209
networkx.algorithms.components.semiconnected,

225
networkx.algorithms.components.strongly_connected,

212
networkx.algorithms.components.weakly_connected,

216
networkx.algorithms.connectivity, 225
networkx.algorithms.connectivity.connectivity,

228
networkx.algorithms.connectivity.cuts,

235
networkx.algorithms.connectivity.kcomponents,

225
networkx.algorithms.connectivity.kcutsets,

227
networkx.algorithms.connectivity.stoerwagner,

242
networkx.algorithms.connectivity.utils,

243
networkx.algorithms.core, 244
networkx.algorithms.cycles, 247
networkx.algorithms.dag, 250
networkx.algorithms.distance_measures,

254
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networkx.algorithms.distance_regular,
256

networkx.algorithms.dominance, 258
networkx.algorithms.dominating, 260
networkx.algorithms.euler, 261
networkx.algorithms.flow, 262
networkx.algorithms.graphical, 283
networkx.algorithms.hierarchy, 286
networkx.algorithms.hybrid, 287
networkx.algorithms.isolate, 288
networkx.algorithms.isomorphism, 289
networkx.algorithms.isomorphism.isomorphvf2,

292
networkx.algorithms.link_analysis.hits_alg,

306
networkx.algorithms.link_analysis.pagerank_alg,

302
networkx.algorithms.link_prediction, 308
networkx.algorithms.matching, 314
networkx.algorithms.minors, 315
networkx.algorithms.mis, 319
networkx.algorithms.mst, 320
networkx.algorithms.operators.all, 325
networkx.algorithms.operators.binary,

322
networkx.algorithms.operators.product,

327
networkx.algorithms.operators.unary, 322
networkx.algorithms.richclub, 331
networkx.algorithms.shortest_paths.astar,

349
networkx.algorithms.shortest_paths.dense,

347
networkx.algorithms.shortest_paths.generic,

332
networkx.algorithms.shortest_paths.unweighted,

336
networkx.algorithms.shortest_paths.weighted,

338
networkx.algorithms.simple_paths, 350
networkx.algorithms.swap, 352
networkx.algorithms.traversal.breadth_first_search,

358
networkx.algorithms.traversal.depth_first_search,

354
networkx.algorithms.traversal.edgedfs,

360
networkx.algorithms.tree.branchings, 364
networkx.algorithms.tree.recognition,

361
networkx.algorithms.triads, 366
networkx.algorithms.vitality, 367

c
networkx.classes.function, 369
networkx.convert, 431
networkx.convert_matrix, 434

d
networkx.drawing.layout, 494
networkx.drawing.nx_agraph, 489
networkx.drawing.nx_pydot, 492
networkx.drawing.nx_pylab, 481

e
networkx.exception, 499

g
networkx.generators.atlas, 377
networkx.generators.classic, 377
networkx.generators.community, 413
networkx.generators.degree_seq, 395
networkx.generators.directed, 402
networkx.generators.ego, 409
networkx.generators.expanders, 382
networkx.generators.geometric, 405
networkx.generators.intersection, 411
networkx.generators.line, 408
networkx.generators.nonisomorphic_trees,

417
networkx.generators.random_clustered,

401
networkx.generators.random_graphs, 387
networkx.generators.small, 383
networkx.generators.social, 412
networkx.generators.stochastic, 410

l
networkx.linalg.algebraicconnectivity,

424
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networkx.readwrite.nx_shp, 479
networkx.readwrite.nx_yaml, 471
networkx.readwrite.pajek, 477
networkx.readwrite.sparse6, 475

u
networkx.utils, 501
networkx.utils.contextmanagers, 508
networkx.utils.decorators, 505
networkx.utils.misc, 501
networkx.utils.random_sequence, 502
networkx.utils.rcm, 506
networkx.utils.union_find, 502
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__getitem__() (DiGraph method), 55
__getitem__() (Graph method), 26
__getitem__() (MultiDiGraph method), 116
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__init__() (Graph method), 13
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all_node_cuts() (in module net-
workx.algorithms.connectivity.kcutsets),
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all_pairs_dijkstra_path() (in module net-
workx.algorithms.shortest_paths.weighted),
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workx.algorithms.cluster), 206
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average_node_connectivity() (in module net-
workx.algorithms.connectivity.connectivity),
228

average_shortest_path_length() (in module net-
workx.algorithms.shortest_paths.generic),
335

B
balanced_tree() (in module networkx.generators.classic),

378
barabasi_albert_graph() (in module net-

workx.generators.random_graphs), 393
barbell_graph() (in module networkx.generators.classic),

378
bellman_ford() (in module net-

workx.algorithms.shortest_paths.weighted),
345

betweenness_centrality() (in module net-
workx.algorithms.bipartite.centrality), 171

betweenness_centrality() (in module net-
workx.algorithms.centrality), 181

bfs_edges() (in module net-
workx.algorithms.traversal.breadth_first_search),
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bfs_predecessors() (in module net-
workx.algorithms.traversal.breadth_first_search),
359

bfs_successors() (in module net-
workx.algorithms.traversal.breadth_first_search),
360

bfs_tree() (in module net-
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359

biadjacency_matrix() (in module net-
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biconnected_component_edges() (in module net-
workx.algorithms.components.biconnected),
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biconnected_component_subgraphs() (in module net-
workx.algorithms.components.biconnected),
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223
biconnected_components() (in module net-

workx.algorithms.components.biconnected),
221

bidirectional_dijkstra() (in module net-
workx.algorithms.shortest_paths.weighted),
343

binomial_graph() (in module net-
workx.generators.random_graphs), 390

blockmodel() (in module networkx.algorithms.block),
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branching_weight() (in module net-
workx.algorithms.tree.branchings), 364
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build_auxiliary_node_connectivity() (in module net-
workx.algorithms.connectivity.utils), 243

build_residual_network() (in module net-
workx.algorithms.flow), 274

bull_graph() (in module networkx.generators.small), 385

C
candidate_pairs_iter() (DiGraphMatcher method), 296
candidate_pairs_iter() (GraphMatcher method), 295
capacity_scaling() (in module networkx.algorithms.flow),
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workx.algorithms.distance_measures), 254
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workx.algorithms.chordal.chordal_alg), 199
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circular_ladder_graph() (in module net-

workx.generators.classic), 380
circular_layout() (in module networkx.drawing.layout),

494
clear() (DiGraph method), 48
clear() (Graph method), 20
clear() (MultiDiGraph method), 108
clear() (MultiGraph method), 80

clique_removal() (in module net-
workx.algorithms.approximation.clique),
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cliques_containing_node() (in module net-
workx.algorithms.clique), 204

closeness_centrality() (in module net-
workx.algorithms.bipartite.centrality), 169

closeness_centrality() (in module net-
workx.algorithms.centrality), 180

closeness_vitality() (in module net-
workx.algorithms.vitality), 367

clustering() (in module net-
workx.algorithms.bipartite.cluster), 164

clustering() (in module networkx.algorithms.cluster), 205
cn_soundarajan_hopcroft() (in module net-

workx.algorithms.link_prediction), 311
collaboration_weighted_projected_graph() (in module

networkx.algorithms.bipartite.projection), 159
color() (in module networkx.algorithms.bipartite.basic),
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common_neighbors() (in module net-

workx.classes.function), 372
communicability() (in module net-

workx.algorithms.centrality), 191
communicability_betweenness_centrality() (in module

networkx.algorithms.centrality), 195
communicability_centrality() (in module net-

workx.algorithms.centrality), 193
communicability_centrality_exp() (in module net-

workx.algorithms.centrality), 194
communicability_exp() (in module net-

workx.algorithms.centrality), 192
complement() (in module net-

workx.algorithms.operators.unary), 322
complete_bipartite_graph() (in module net-

workx.algorithms.bipartite.generators), 172
complete_graph() (in module net-

workx.generators.classic), 379
complete_multipartite_graph() (in module net-

workx.generators.classic), 379
compose() (in module net-

workx.algorithms.operators.binary), 323
compose_all() (in module net-

workx.algorithms.operators.all), 325
condensation() (in module net-

workx.algorithms.components.strongly_connected),
216

configuration_model() (in module net-
workx.algorithms.bipartite.generators), 172

configuration_model() (in module net-
workx.generators.degree_seq), 396

connected_caveman_graph() (in module net-
workx.generators.community), 414
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connected_component_subgraphs() (in module net-
workx.algorithms.components.connected),
211

connected_components() (in module net-
workx.algorithms.components.connected),
211

connected_double_edge_swap() (in module net-
workx.algorithms.swap), 353

connected_watts_strogatz_graph() (in module net-
workx.generators.random_graphs), 392

contracted_edge() (in module net-
workx.algorithms.minors), 315

contracted_nodes() (in module net-
workx.algorithms.minors), 316

copy() (DiGraph method), 66
copy() (Graph method), 34
copy() (MultiDiGraph method), 127
copy() (MultiGraph method), 94
core_number() (in module networkx.algorithms.core),

244
cost_of_flow() (in module networkx.algorithms.flow),
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could_be_isomorphic() (in module net-

workx.algorithms.isomorphism), 291
create_degree_sequence() (in module net-

workx.utils.random_sequence), 503
create_empty_copy() (in module net-

workx.classes.function), 370
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cumulative_distribution() (in module net-
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workx.algorithms.centrality), 183
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workx.algorithms.centrality), 183
cuthill_mckee_ordering() (in module net-

workx.utils.rcm), 506
cycle_basis() (in module networkx.algorithms.cycles),
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cycle_graph() (in module networkx.generators.classic),
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dag_longest_path() (in module networkx.algorithms.dag),
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dag_longest_path_length() (in module net-

workx.algorithms.dag), 253
davis_southern_women_graph() (in module net-

workx.generators.social), 412
default_opener() (in module networkx.utils.misc), 502
degree() (DiGraph method), 60
degree() (Graph method), 30
degree() (in module networkx.classes.function), 369

degree() (MultiDiGraph method), 121
degree() (MultiGraph method), 90
degree_assortativity_coefficient() (in module net-

workx.algorithms.assortativity), 141
degree_centrality() (in module net-

workx.algorithms.bipartite.centrality), 170
degree_centrality() (in module net-

workx.algorithms.centrality), 178
degree_histogram() (in module net-

workx.classes.function), 369
degree_iter() (DiGraph method), 60
degree_iter() (Graph method), 31
degree_iter() (MultiDiGraph method), 121
degree_iter() (MultiGraph method), 91
degree_mixing_dict() (in module net-

workx.algorithms.assortativity), 148
degree_mixing_matrix() (in module net-

workx.algorithms.assortativity), 148
degree_pearson_correlation_coefficient() (in module net-

workx.algorithms.assortativity), 143
degree_sequence_tree() (in module net-

workx.generators.degree_seq), 400
degrees() (in module net-

workx.algorithms.bipartite.basic), 153
dense_gnm_random_graph() (in module net-

workx.generators.random_graphs), 389
density() (in module net-

workx.algorithms.bipartite.basic), 153
density() (in module networkx.classes.function), 369
desargues_graph() (in module net-

workx.generators.small), 385
descendants() (in module networkx.algorithms.dag), 250
dfs_edges() (in module net-

workx.algorithms.traversal.depth_first_search),
354

dfs_labeled_edges() (in module net-
workx.algorithms.traversal.depth_first_search),
357

dfs_postorder_nodes() (in module net-
workx.algorithms.traversal.depth_first_search),
357

dfs_predecessors() (in module net-
workx.algorithms.traversal.depth_first_search),
355

dfs_preorder_nodes() (in module net-
workx.algorithms.traversal.depth_first_search),
356

dfs_successors() (in module net-
workx.algorithms.traversal.depth_first_search),
356

dfs_tree() (in module net-
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diameter() (in module net-
workx.algorithms.distance_measures), 254

diamond_graph() (in module networkx.generators.small),
385

dictionary, 517
difference() (in module net-

workx.algorithms.operators.binary), 324
DiGraph() (in module networkx), 36
dijkstra_path() (in module net-

workx.algorithms.shortest_paths.weighted),
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dijkstra_path_length() (in module net-
workx.algorithms.shortest_paths.weighted),
339

dijkstra_predecessor_and_distance() (in module net-
workx.algorithms.shortest_paths.weighted),
344

directed_configuration_model() (in module net-
workx.generators.degree_seq), 397

directed_havel_hakimi_graph() (in module net-
workx.generators.degree_seq), 400

directed_laplacian_matrix() (in module net-
workx.linalg.laplacianmatrix), 422

discrete_sequence() (in module net-
workx.utils.random_sequence), 503

disjoint_union() (in module net-
workx.algorithms.operators.binary), 324

disjoint_union_all() (in module net-
workx.algorithms.operators.all), 326

dispersion() (in module networkx.algorithms.centrality),
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dodecahedral_graph() (in module net-
workx.generators.small), 385

dominance_frontiers() (in module net-
workx.algorithms.dominance), 259

dominating_set() (in module net-
workx.algorithms.dominating), 260

dorogovtsev_goltsev_mendes_graph() (in module net-
workx.generators.classic), 380

double_edge_swap() (in module net-
workx.algorithms.swap), 352

draw() (in module networkx.drawing.nx_pylab), 482
draw_circular() (in module networkx.drawing.nx_pylab),

488
draw_graphviz() (in module net-

workx.drawing.nx_pylab), 489
draw_networkx() (in module net-

workx.drawing.nx_pylab), 483
draw_networkx_edge_labels() (in module net-

workx.drawing.nx_pylab), 487
draw_networkx_edges() (in module net-

workx.drawing.nx_pylab), 485
draw_networkx_labels() (in module net-

workx.drawing.nx_pylab), 486

draw_networkx_nodes() (in module net-
workx.drawing.nx_pylab), 484

draw_random() (in module networkx.drawing.nx_pylab),
488

draw_shell() (in module networkx.drawing.nx_pylab),
489

draw_spectral() (in module networkx.drawing.nx_pylab),
488

draw_spring() (in module networkx.drawing.nx_pylab),
489

duplication_divergence_graph() (in module net-
workx.generators.random_graphs), 394
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ebunch, 517
eccentricity() (in module net-

workx.algorithms.distance_measures), 255
edge, 517
edge attribute, 517
edge_betweenness_centrality() (in module net-

workx.algorithms.centrality), 182
edge_boundary() (in module net-

workx.algorithms.boundary), 177
edge_connectivity() (in module net-

workx.algorithms.connectivity.connectivity),
229

edge_current_flow_betweenness_centrality() (in module
networkx.algorithms.centrality), 184

edge_dfs() (in module net-
workx.algorithms.traversal.edgedfs), 360

edge_load() (in module networkx.algorithms.centrality),
197

edges() (DiGraph method), 50
edges() (Graph method), 22
edges() (in module networkx.classes.function), 372
edges() (MultiDiGraph method), 110
edges() (MultiGraph method), 82
edges_iter() (DiGraph method), 50
edges_iter() (Graph method), 23
edges_iter() (in module networkx.classes.function), 372
edges_iter() (MultiDiGraph method), 111
edges_iter() (MultiGraph method), 83
Edmonds (class in networkx.algorithms.tree.branchings),

366
edmonds_karp() (in module networkx.algorithms.flow),
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ego_graph() (in module networkx.generators.ego), 410
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Index 527



NetworkX Reference, Release 1.11

enumerate_all_cliques() (in module net-
workx.algorithms.clique), 201

eppstein_matching() (in module net-
workx.algorithms.bipartite.matching), 154

erdos_renyi_graph() (in module net-
workx.generators.random_graphs), 390

estrada_index() (in module net-
workx.algorithms.centrality), 196

eulerian_circuit() (in module networkx.algorithms.euler),
261

expected_degree_graph() (in module net-
workx.generators.degree_seq), 398

F
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workx.algorithms.isomorphism), 291
fast_gnp_random_graph() (in module net-

workx.generators.random_graphs), 388
faster_could_be_isomorphic() (in module net-

workx.algorithms.isomorphism), 291
fiedler_vector() (in module net-

workx.linalg.algebraicconnectivity), 425
find_cliques() (in module networkx.algorithms.clique),

202
find_cycle() (in module networkx.algorithms.cycles), 249
find_induced_nodes() (in module net-

workx.algorithms.chordal.chordal_alg), 200
flatten() (in module networkx.utils.misc), 501
florentine_families_graph() (in module net-

workx.generators.social), 413
flow_hierarchy() (in module net-

workx.algorithms.hierarchy), 286
floyd_warshall() (in module net-

workx.algorithms.shortest_paths.dense),
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floyd_warshall_numpy() (in module net-
workx.algorithms.shortest_paths.dense),
348

floyd_warshall_predecessor_and_distance() (in module
networkx.algorithms.shortest_paths.dense),
348

freeze() (in module networkx.classes.function), 375
from_agraph() (in module networkx.drawing.nx_agraph),

490
from_biadjacency_matrix() (in module net-

workx.algorithms.bipartite.matrix), 157
from_dict_of_dicts() (in module networkx.convert), 432
from_dict_of_lists() (in module networkx.convert), 433
from_edgelist() (in module networkx.convert), 434
from_numpy_matrix() (in module net-

workx.convert_matrix), 437
from_pandas_dataframe() (in module net-

workx.convert_matrix), 442

from_pydot() (in module networkx.drawing.nx_pydot),
492

from_scipy_sparse_matrix() (in module net-
workx.convert_matrix), 439

frucht_graph() (in module networkx.generators.small),
385

fruchterman_reingold_layout() (in module net-
workx.drawing.layout), 495

G
gaussian_random_partition_graph() (in module net-

workx.generators.community), 416
general_random_intersection_graph() (in module net-

workx.generators.intersection), 411
generate_adjlist() (in module networkx.readwrite.adjlist),
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generate_edgelist() (in module net-

workx.readwrite.edgelist), 454
generate_gml() (in module networkx.readwrite.gml), 461
generate_graph6() (in module net-

workx.readwrite.graph6), 473
generate_multiline_adjlist() (in module net-

workx.readwrite.multiline_adjlist), 449
generate_sparse6() (in module net-

workx.readwrite.sparse6), 476
generate_unique_node() (in module networkx.utils.misc),

502
generic_edge_match() (in module net-

workx.algorithms.isomorphism), 300
generic_multiedge_match() (in module net-

workx.algorithms.isomorphism), 301
generic_node_match() (in module net-

workx.algorithms.isomorphism), 300
generic_weighted_projected_graph() (in module net-

workx.algorithms.bipartite.projection), 161
geographical_threshold_graph() (in module net-

workx.generators.geometric), 406
get_edge_attributes() (in module net-

workx.classes.function), 374
get_edge_data() (DiGraph method), 53
get_edge_data() (Graph method), 24
get_edge_data() (MultiDiGraph method), 114
get_edge_data() (MultiGraph method), 84
get_node_attributes() (in module net-

workx.classes.function), 373
global_parameters() (in module net-

workx.algorithms.distance_regular), 258
gn_graph() (in module networkx.generators.directed),

403
gnc_graph() (in module networkx.generators.directed),

404
gnm_random_graph() (in module net-

workx.generators.random_graphs), 389
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gnmk_random_graph() (in module net-
workx.algorithms.bipartite.generators), 175

gnp_random_graph() (in module net-
workx.generators.random_graphs), 388

gnr_graph() (in module networkx.generators.directed),
403

google_matrix() (in module net-
workx.algorithms.link_analysis.pagerank_alg),
305

Graph() (in module networkx), 9
graph_atlas_g() (in module networkx.generators.atlas),

377
graph_clique_number() (in module net-

workx.algorithms.clique), 203
graph_number_of_cliques() (in module net-

workx.algorithms.clique), 203
graphviz_layout() (in module net-

workx.drawing.nx_agraph), 491
graphviz_layout() (in module net-
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workx.algorithms.tree.branchings), 365
greedy_color() (in module net-
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